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Abstract

We explore a Plucker-type relation which occurs naturally in the study of maximally supersym-
metric solutions of certain supergravity theories. This relation generalises at the same time the
classical Plucker relation and the Jacobi identity for a metric Lie algebra and coincides with the
Jacobi identity of a metria-Lie algebra. In low dimension we present evidence for a geometric
characterisation of the relation in terms of middle-dimensional orthogonal planes in Euclidean or
Lorentzian inner product spaces.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction and main result

The purpose of this note is to present a conjectural Pliicker-style formula for middle-
dimensional orthogonal planes in real vector spaces equipped with an inner product of Eu-
clidean or Lorentzian signatures. The formulais both a natural generalisation of the classical
Plucker formula and of the Jacobi identity for Lie algebras admitting an invariant scalar
product. The formula occurs naturally in the study of maximally supersymmetric solutions
of 10-dimensional type [IB supergravity and also in six-dimensional chiral supergravity.
We will state the conjecture and then prove it for special cases which have found appli-
cations in physics. To place it in its proper mathematical context we start by reviewing
the classical Pllcker relations. For a recent discussion, see the[pppgrEastwood and
Michor.
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1.1. The classical Plicker relations

The classical Plicker relations describe the projective embedding of the Grassmannian
of planes. LetV be ad-dimensional vector space (ovRror C, say) and letV* be the
dual. LetA?V* denote the space gf-forms onV and A”V the space op-polyvectors
onV. We shall say that @-form F is simple(or decomposab)éf it can be written as the
wedge product op 1-forms. Every (non-zero) simple-form defines g-planell C V*,
by declaringlT to be the span of thg 1-forms. Conversely, to suchaplanell one can
associate a simple-form by taking a basis and wedging the elements together. A different
choice of basis merely results in a non-zero multiple (the determinant of the change of
basis) of the simplg-form. This means that the space gplanes is naturally identified
with the subset of the projective space of ghorms corresponding to the rays of simple
p-forms. The classical Plucker relations (see, §132]) give the explicit embedding in
terms of the intersection of a number of quadricglifiv*. Explicitly one has the following
theorem.

Theorem 1. A p-formF € APV* is simple if and only if for everyp — 1)-polyvector
5 e AP~1y,

LEF/\FZO,

wherez F denotes thd-form obtained by contracting F with'.

Being homogeneous, these equations are well defined in the projectivespégé =

P(Z)’l, and hence define an algebraic embedding there of the Grassmaniaml)Gof
p-planes ind dimensions.

The Plucker relations arise naturally in the study of maximally supersymmetric solutions
of 11-dimensional supergravifi3,4]. Indeed, the Plucker relations for the 4-fotf in
11-dimensional supergravity arise from the zero curvature condition for the supercovariant
derivative. A similar analysis for 10-dimensional type 1I1B supergrajdlyyields new (at
least to us) Plucker-type relations, to which we now turn.

1.2. Orthogonal Plicker-type relations

LetV be areal vector space of finite dimension equipped with a Euclidean or Lorentzian
inner product(—, —). Let F € APV* be ap-form and letZ € AP~V be a p —
2)-polyvector. The contractiorg F of F with Z' is a 2-form onV and hence gives rise
to an element of the Lie algebsa(V). If € A2V* = s0(V), we will denote its action on
aforms2 € AV* by [w, £2]. Explicitly, if @ = a A B, fora, 8 € V*, then

[anB Rl =anig2—BAL:S2,

wherea” € Vis the dual vector ta defined using the inner product. We then extend linearly
to any 2-formw.

Let F1 and F» be two simple forms im”V*. For the purposes of this note we will say
that F, and F» are orthogonalif the d-planeslT; c V that they define are orthogonal;
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that is, (X1, X2) = O for all X; € IT;. Note that if the inner product iW is of Lorentzian
signature then orthogonality does not imply that N 7o = 0, as they could have a null
direction in common. If this is the casg; = a A ®;, wherea is a null form and®; are
orthogonal simple forms in a Euclidean space in two dimensions less. Far from being a
pathology, the case of null forms plays an important role in the results of Figueroa-O’Farrill
and Papadopouldd] and is responsible for the existence of a maximally supersymmetric
plane wave in 11B supergravitip].

We now can state the following conjecture.

Conjecture 1.

() Letp > 2and F € APV* be a p-form on a d-dimensional Euclidean or Lorentzian
inner product spacé/, whered = 2p or d = 2p + 1. For all (p — 2)-polyvectors
Z e AP=2V, the equation

[tzF. F] =0 )

is satisfied if and only if F can be written as a sum of two orthogonal simple fahaiis
is,

F=FN+F

whereF1 and F» are simple and, L Fb.
(i) Letp =2andF € APV* be a p-form on the Euclidean or Lorentzian vector spsice
with dimensiorp < d < 2p. Eq. (1)holds if and only if F is simple

Again the equation is homogeneous, hence its zero locus is well defined in the projective
d
space ofPAPV* = p() -1,
Relative to a basige;} for V relative to which the inner product has matgix, we can
rewriteEq. (1)as

d
ko, CE. . 1, —
Z 8 Fkl112~~-tp—2[11F/zja-"JpV =0,
k=1

which shows that the “if” part of the conjecture follows trivially: simply complete to a
pseudo-orthonormal basis fdrthe bases for the planés, express this equation relative
to that basis and observe that every term vanishes.

Finally letus remark as a trivial check that both @9and the conclusion of the conjecture
are invariant under the orthogonal groug¥Q. A knowledge of the orbit decomposition
of the space ofp-forms in V under QV) might provide some further insight into this
problem.

To this date the first part of the conjecture has been verified for the following cases:

e p < 2: both for Euclidean and Lorentzian signatures,
e d = 6, p = 3: both for Euclidean and Lorentzian signatures,
e d =7, p = 3:for Euclidean signature,
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e d = 8, p = 4: for Euclidean signature, and
e d =10, p =5: for Euclidean and Lorentzian signatures.

It is the latter case which is required in the investigation of maximally supersymmetric
solutions of 10-dimensional type 11B supergray, whereas the second case enters in the
case of six-dimensiondl, 0) supergravity{6]. The fourth is expected to have applications
in eight-dimensional supergravity theories.

The second part of the conjecture has been verified in the cases:

p < 2: both for Euclidean and Lorentzian signatures,
d < 6, p = 3: both for Euclidean and Lorentzian signatures,
e d < 8, p = 4: for Euclidean signature.

There are two conditions in the hypothesis which seem atrtificial at first:

the restriction on the signature of the inner product, and
the restriction on the dimension of the vector space.

These conditions arise from explicit counterexamples for fgwvhich we now discuss
together with a Lie algebraic re-interpretation of the iden(ity

Before we proceed to explain these, let us remark that it might just be the case that the
restriction on the dimension of the vector space is an artefact oplowe have no direct
evidence of this, except for the following. We depart from the observation that the ratio of
the number of relations to the number of componentspfarm in d dimensions is{p‘iz).

For fixed p and larged, this ratio behaves a#’~2. So forp = 2, the ratio is 1 and for

p = 3 grows linearly agl. It is the latter case where the counterexamples that justify the
restriction on the dimensions will be found. Fpr> 3 this ratio grows much faster and

it is perhaps not unreasonable to expect that the only solutions are those which verify the
conjecture.

1.3. Thecasgp =2

Let us observe that fop = 2 there are no equations, sincg F] = O trivially in
s0(V). The conjecture would say that afy € so(V) can be “skew-diagonalised”. In
Euclidean signature this is true: it is the conjugacy theorem for Cartan subalgebras of
s0(V) = so(d). The result also holds in Lorentzian signature; although it is more com-
plicated, since depending on the type of element (elliptic, parabolic or hyperbolic) of
s0(V) = s0(1,d — 1), it conjugates to one of a set of normal forms, all of which satisfy the
conjecture.

The conjecture does not hold in signaty2ed) for anyd > 2, as a quick glance at the
normal forms of elements @b(2, d) under Q2, d) shows that there are irreducible blocks
of dimension higher than 2. In other words, there are elements so(2, d) for which
there is no decomposition &2 into 2-planes stabilised by. A similar situation holds
in signature(p, q) for p, g > 2, as can be gleaned from the normal forms tabulat¢d]in

This justifies restricting the signature of the scalar product amthe hypothesis to the
conjecture. The restriction on the dimension\bfrrises by studying the cage= 3, to
which we now turn.
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1.4. The casgp = 3

Let F € A3V*. Using the scalar produdt defines a linear map, —] : A2V — V by
F(X,Y,Z)=(X,Y],Z), foral X,Y,ZeV. (2)

The Plucker formuldl) in this case is nothing but the statement that foxa#f V, the map
Y — [X, Y] should be a derivation over], —]:

[X.[¥. 2]l = [[X. Y]. Z] + [Y. [X, Z]]. ®3)

In other words, it is the Jacobi identity for-[ —], turning V into a Lie algebra, as the
notation already suggests. More is true, however, and because of the fagt¢hafVv*,
the metric is invariant:

([X.Y], Z) = (X, [, Z]).

In other words, solutions ofl) for p = 3 are in one-to-one correspondence with Lie
algebras admitting an invariant non-degenerate scalar product.

We will show below (in two different ways) that the conjecture worksdat 7, but the
simple Lie algebrau(3) with the Killing form provides a counterexample to the conjecture
for d = 8 (and also for anyl > 8 by adding to it an Abelian factor). To see this, suppose
that the 3-formF associated teu(3) decomposed into a sun¥ = F; + F> of orthogonal
simple forms. Eacl¥; defines a three-plane #u(3). Let Z € su(3) be orthogonal to both
of these planes: suchexists because disu(3) = 8. Theniz F = 0, and this would mean
thatforallX, Y, F(Z, X,Y) = ([Z, X], Y) = 0, sothatZ is central, which is a contradiction
becauseu(3) is simple.

1.5. Metricn-Lie algebras

There is another interpretation of the Pliicker relafibyin terms of a generalisation of
the notion of Lie algebra.

Letp = n+1andF € A"*1V* and as we did fop = 3 let us define a map {-] :
A"V — V by

F(X1, X2, ..., Xp+1) = ([ X1, ..., Xul, Xus1). 4)
The relation(1) now says that for alX, ..., X,,—1 € V, the endomorphism o¥ defined
byY — [X1,..., X,—1, Y] is a derivation over-[- - ]; that is,

n
[Xla L] Xn—l’ [Ylv e ey Yl’l]] = Z[Yl7 ) [Xla -~-»Xn—la Yl]7 ) Yl’l]' (5)

i=1

1 For generap andd, there is no reason wh should break up a8 = Fy + F»; in the general case we would
haveF = F; + F2 + - - -, where theF; are simple and mutually orthogonal.
2 We are grateful to Dmitriy Rumynin for making us aware of the existence of this concept.
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Eq. (5)turnsV into ann-Lie algebra a notion introduced i8] and studied since by
many authors.(Notice that, perhaps unfortunately, in this notation, a Lie algebra is a 2-Lie
algebra.) More is true, however, and again the fact that A”+1V* means that

<[Xla ceey Xl’l—lv Xn]a Xn+l> - _<[Xla ceey X}’l—l» Xn+1]a Xn)a (6)

which we tentatively call an-Lie algebra with an invariant metric, onaetric n-Lie algebra
for short.
To see thaEgs. (1) and (5are the same, let us first rewri). (1)as follows:

thFa AF, =0,
a

whereX stands for ar{ — 1)-vectorXq A - - - A X,—1, and whereF, = ¢, F andF? = (e« F
with e, = gap€”. Contracting the above equation with+ 1 vectorsYy, ..., Y411, we
obtain

D uxF*AF)(Y1,Ya, ..., Yay1) =0,
a

which can be rewritten as

n+1
Z(_l)lil<[xlf AR ] X"L_l’ Yi]7 [Y11 AR ] Yi? AR ] Yn+1]) = 07
i=1

where a hat over a symbol denotes its omission. This equation is equivalent to
<[X15 ey X}’l*l) Y}’l+1]7 [Yla R Yn])

n
=D DXy X Y] Y Y Yaa)).
i=1

Finally we use the invariance propei) of the metric to arrive at

<[X11 RN Xn—l» [Yla L] Yn]]s Yvn-‘rl)
n
=) ([71,....[X1, .., Xu—1, Vi), ..., Yl Yga),
i=1

which, since this is true in particular for &}, 1, agrees with{4).

There seems to be some structure theorynfdie algebras but to our knowledge so
far nothing on metrio:-Lie algebras. Developing this theory further one could perhaps
gain further insight into this conjecture. We are not aware of a notiortlaé group, but
if it did exist then both Ad § x S° and the 1B Hpp-wave would be examples of 4-Lie
groups!

3 This structure is sometimes also calleBitippov algebra.
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2. Verificationsin low dimension

To verify the conjecture in the cases mentioned above, we shall use some group theory
and the fact that any 2-form can be skew-diagonalised by an orthogonal transformation, to
write down an ansatz for the-form which we then proceed to analyse systematically. Some
of the calculations leading to the verification of the conjecture have been done or checked
with Mathematicaand are contained in notebooks which are available upon request. Since
the inner product allows us to identify and its dualv*, we will ignore the distinction in
what follows.

2.1. Proof forF € A3ES

Let F € A%E® be a 3-form in six-dimensional Euclidean space. There is an orthonormal
basis{es, e2, .. ., eg} for which the 2-form1 F obtained by contractingy into F takes the
form

uF = aex3+ Bess,

whereejj = ¢; A ej and similarly forejj..., in what follows.

We must distinguish several cases depending on whethed g are generic or not. In
the general case, F is a generic element of a Cartan subalgebreoo#) acting onE* =
R{ez, e3, e4, e5). The non-generic cases are in one-to-one correspondence with conjugacy
classes of subalgebras «f(4) of strictly lower rank. In summary we have the following
cases to consider:

(1) so(4): « andg generic,
(2) su(2):a==+B+#0,and
(3) s0(2): B=0,a £ 0.

We now treat each case in turn.

2.1.1. s0(4)
In the first caseq and g are generic, whence the equationH, F] = 0 says that only
terms invariant under the maximal torus generated, bysurvive, whence

F = ae123+ Pe1as+ yess + dease.
The remaining equations F, F] = 0 are satisfied if and only if

af+ys=0. 7
Therefore we see that indeed

F = (ae1 + yee) A e23+ (Be1 + des) A eas

can be written as the sum of two simple forms which moreover are orthogonal EEinta
implies that

(ae1 + yeg) L (Be1 + dee).
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2.1.2. su(2)
Suppose that = g (the casex = —pg is similar), so that

1 F = a(ezx3 + ess).

This means that F belongs to the Cartan subalgebra of the self-dual SU(2) in SO(4). The
condition |1 F, F] = 0 implies that only terms which have zero weights with respect to this
self-dualsu(2) survive, whence

F =a(e123+ e145) + e A ((e23 + e45) + y(e23 — e45)
+ 8(e3q — e25) + £(e24 + e35)).

However we are allowed to rotate the basis by the normaliser of this Cartan subalgebra,
which is U(1) x SU(2), where the U(1) is the circle generated ¥ and the SU(2) is
anti-self-dual. Conjugating by the anti-self-dual SU(2) means that we cahput = 0,

say. The remaining equationg|F, F] = 0 are satisfied if and only if

o+ =2 ®)
This means that
F = (ae1 + (n + y)es) A e23+ (aer + (n — y)es) A ess,

whenceF can indeed be written as a sum of two simple 3-form which moreover are or-
thogonal sincé&q. (8)implies that

(ae1 + (m+ y)es) L (axer + (7 — p)ep),

as desired.

2.1.3.50(2)
Finally let us consider the case where
11F = aeos.
The surviving terms irF after applying [ F, F] = 0, are
F = ae123+ ne2za+ ye2ss + de236 + eesse.
But we can rotate in the (456) plane to magke- § = 0, whence
F = (ae1 + nea) A e23+ ceq A esp

can be written as a sum of two simple forms. Finally the remaining equatighsf] = 0
simply say that

ne =0, 9)
whence the simple forms are orthogonal, since
(ae1 + nes) L cey.

This verifies the conjecture faf = 3 and Euclidean signature.
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2.2. Proof forF € ASELS

The Lorentzian case is almost identical to the Euclidean case, with a few signs in the
equations distinguishing them. LEte A3EL® be a 3-form in six-dimensional Minkowski
space-time with pseudo-orthonormal bagis e, . . ., eg} With eg time-like. Rotating if
necessary in the five-dimensional Euclidean space spanndebfs, ..., eg}, we can
guarantee that

toF = aez3 + Beys,

as for the Euclidean case. As in that case, we must distinguish between three cases:

(1) so(4): @ andp generic,
(2) su(2):a=+B+#0,and
(3) s50(2): =0,a #0,

which we now briefly treat in turn.
In the first case,pF, F] = 0 means that the only terms iwhich survive are

F = aep23+ Beoas + yez36 + dease,
which is already a sum of two simple forms
F = (xeg + yes) N e23+ (Beo + Ses) A e4s.
The remaining equationsy{ F, F] = 0 are satisfied if and only if
aff = y8, (10)

which makesxeg + yes and Beg + deg orthogonal, verifying the conjecture in this case.
We remark that this includes the null case as statefd]iwhich corresponds to setting
a=p=y=34.

In the second case, le3F = «a(ez3 + e4s), with the other possibilityy = —8 being
similar. The equationgF, F] = O results in the following:

F = a(ep23+ epas) + eg A (17(e23 + e45) + y(e23 — e45)
+ 8(e24 + e35) + £(ezs + €34)).

We can rotate by the anti-self-dual 8y ¢ SO4) in such a way that = ¢ = 0, whence
F take the desired form

F = (aeo + (n + y)es) N e23+ (aeo + (1 — V)es) A ess.
The remaining equationsy{ F, F] = 0 are satisfied if and only if
o’ +y% =0, (11)

which makesreg + (7 + y)es andaeg + (7 — y)es orthogonal, verifying the conjecture in
this case.
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Finally letigF = aez3. The equationp F, F] = 0 implies that
F = aeg23+ ne2za+ ye23s + ez + eesse.
Rotating in the (456) plane we can make= § = 0, whenceF' takes the desired form
F = (aeg + neq) A ex3+ geq A esg.
The remaining equationsy F, F] = 0 are satisfied if and only if
ne =0, (12)

makingaep + nes andeey orthogonal, and verifying the conjecture in this case, and hence
in general ford = 3 and Lorentzian signature.

2.3. Proof forF € A3E’

Let F € ASE’ be a 3-form in a seven-dimensional Euclidean space with orthonormal
basis{e;};—1....7, relative to which the 2-fornyy F obtained by contracting; into F takes
the form

.....

17F = ae12 + Pezs + yess,

whereejj = ¢; A e; and similarly forejj..., in what follows.

We must distinguish several cases depending on whethg#andy are generic or not.
In the general case;F is a generic element of a Cartan subalgebraogf) acting on
the Euclidean spadg® spanned bye;};—1....6. The non-generic cases are in one-to-one
correspondence with conjugacy classes of subalgebras(®f of strictly lower rank. In
summary we have the following cases to consider:

(1) so(6): «, B andy generic;

(2) su(2) x u(l): « = &8 andy generic;
(3) u(1) diagonala = 8 = v;

@) su@®:a+B+y=0;

(5) so(4): «, B generic and = 0O;

(6) su(2): « = +Bandy = 0; and

(7) s0(2):y=B8=0,a0 #0.

We now treat each case in turn.

2.3.1. 50(6)
In the first casey, 8 andy are generic, whence the equatiopH, F] = 0 says that only
terms invariant under the maximal torus generated;bysurvive, whence

F = ae127+ Besar + yeser.

The remaining equations F, F] = 0 are satisfied if and only if two af, 8 andy vanish,
violating the hypothesis.
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2.3.2. 5u(2) x u(1)
We choose8 = y andw generic. The casg = —y is similar. The equation{F, F] =0
says that only terms invariant under the maximal torus generatedsurvive. Thus

F = ae127+ B(e3a7+ ese7) + e7 A (8(e34 — es6) + £(e36 — eas) + n(e2s + ess)).

Using an anti-self-dual rotation, we can se=n = 0. If § = 0,theng +6 # B —§
and this leads to the case investigated in the previous sectién=10, invariance under
[t1F, F] = 0 implies that eithew or 8 vanishes, which violates the hypothesis.

2.3.3. u(1) diagonal
Suppose that = B = y. The equationf F, F] = 0 implies that

F = a(e127 + €347+ e567)-

In addition invariance under{F, F] = 0 implies thatxr = 0 which violates the hypothesis.

2.3.4. 5u(3)
Suppose that + 8 + y = 0. The conditionz F, F] = 0 implies that

F = (ae127+ Peza7 + yeser) + 8821 + €822,

where21 and the real and imaginary parts of thg3)-invariant(3, 0)-form with respect
to a complex structuré = e12 + e34 + es6, that is,

£21 = e135— €146 — €236 — €245, 22 = e136+ €145+ €235 — €246 (13)

The presence of these forms can be seen from the decompositiotESfrepresentation
undersu(3). Undersu(3), the representatioR® transforms as the underlying real repre-
sentation of3 @ 3 (or [3] in Salamon’s notatiorf9]). Similarly the representation3E®
decomposes into

ASES =[1] @ [6] @ [3].

The invariant forms are associated with the trivial representations in the decomposition. We
still have the freedom to rotate by the normaliser in SO(6) of the maximal torus of SU(3).
An obvious choice is the diagonal U(1) subgroup of U(3) which leaves invayiamhis

U(1) rotates21 and$2, and we can use it to set= 0. The new case is whén£ 0. In such

case invariance under the rest of the rotatighimplies that8 + 262 = 0 and cyclic inx,

B andy. These relations contradict the hypothesis thaig + y = 0 but otherwise generic.

2.3.5.50(4)
Suppose that andg are generic angt = 0. In that case{ F, F] = 0 implies that
F = ae127+ Pezar + 81e125 + 82e126 + £1€345 + £2€346.

Using a rotation in the (56) plane, we can &et= 0. In additiond; can also be set to zero
with a rotation in the (57) plane and appropriate redefinition oft¢hgands, components.
Thus the 3-form can be written as

F = ae127+ Besar + €1e345 + 2¢346.
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A rotation in the (56) plane leads to = 0. The rest of the conditions;F, F] = 0 imply
thataB = 0 which proves the conjecture.

2.3.6.5u(2)
Suppose that = g andy = 0. The case = —pg can be treated similarly. The condition
[t7F, F] = 0 implies that

F =a(e127+ e347) + 8(e125 + e345) + £(e126 + e346) + n1(e125 — €345)
+ n2(e145 — e235) + 1n3(e135 + €245) + O1(e126 — €346) + 02(e146 — €236)
+ 63(e136 + €246).

With an anti-self-dual rotation, we can set = n3 = 0. There are two cases to consider.
If n1 # 0, the condition sF, F] = 0 implies thatd, = 63 = 0. In such case& can be
rewritten as:

F = (xe7 + (8 + n1)es + (¢ + 01)ep) A e12+ (ae7 + (8 — n1)es + (¢ — 01)ep) A eza.
The rest of the conditions imply that
P+ P —ni+e€—05=0

and soF is the sum of two orthogonal simple forms.
Now if n1 = 0, an anti-self-dual rotation will givé, = 63 = 0. This case is a special
case of the previous one for whigh = 0. The conjecture is confirmed.

2.3.7.50(2)
Suppose that # 0 andg = y = 0. The condition 7 F, F] = 0 implies that

F = ae127+ 01123+ 02€124 + 03€125 + 04€126 + T1€345 + T2€346 + T3€456.

A rotation in the (3456) plane can leadds = 03 = o4 = 0. If o1 # 0, then the condition
[t1F, F] = 0 implies thatr, = 71 = 0 in which case

F = ae127+ 01123 + T3€456.

A further rotation in the (37) plane leads to the desired result.
Now if o1 = 0, a rotation in the (3456) plane can lead$o= 73 = 0 in which case

F = ae127+ 110345
This again gives the desired result.

2.4. Proof forF € ASE? andF € ASEY41 4 <6

We shall focus on the proof of the conjecture fore A3E?. The proof of the statement
in the Lorentzian case is similar. L&te A3E® be a 3-form in five-dimensional Euclidean
space. There is an orthonormal b&gig e, . . ., e5} for which (1 F takes the form

1 F = aepz+ Pess.
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As previous cases, there are several possibilities to consider depending on whattdgr
are generic or not. Using the adopted group theoretic characterisation, we have the following
cases:

(1) so(4): « andp generic,
(2) su(?2):a==+B+#0,and
3) s0(2): B=0,a #0.

We now treat each case in turn.
2.4.1. s50(4)

In the first caseq and g8 are generic, whence the equationH, F] = 0 says that only
terms invariant under the maximal torus generated, bysurvive, whence

F = ae123+ Beiss
The remaining equationg F, F] = 0 are satisfied if and only if
af =0, (14)
which is a contradiction. Thus F cannot be generic.
2.4.2. su(2)
Suppose that = g (the caser = —g is similar), so that
1 F = a(e23 + ess).

This means that F belongs to the Cartan subalgebra of the self-dual SU(2) in SO(4). The
condition |1 F, F] = 0 implies that only terms which have zero weights with respect to this
self-dualsu(2) survive, and so

F = a(e123+ e145).
The remaining equationsyF, F] = 0 are satisfied if and only if
o’ =0, (15)

which is a contradiction. Thug F cannot be self-dual.

2.4.3.50(2)
Finally let us consider the case where

11F = aeos.

The surviving terms inF after applying [1 F, F] = 0, are
F = ae123+ nez2za+ yeass.

But we can rotate in the (45) plane to make- 0, whence
F = (ae1 + nes) N ez3

is a simple form. This verifies the conjecture fbe= 5 and Euclidean signature.
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2.4.4. Proof forF € ASE? andF € ASEYM4—1 4 =34
The proof ford = 3 is obvious. It remains to show the conjecturedae 4. In Euclidean
signature, we have

11 F = aeos.

The surviving terms irF’ after applying [1 F, F] = 0, are
F = ae123+ nezsa.

which can be rewritten as
F = (ce1 + nes) A e23

and so it is a simple form. This verifies the conjecturedcee 4 and Euclidean signature.
The proof for Lorentzian spaces is similar.

2.5. Metric Lie algebras and the cage= 3

We can give an alternate proof for the case- 3 exploiting the relationship with metric
Lie algebras; that is, Lie algebras admitting an invariant non-degenerate scalar product.

It is well known that reductive Lie algebras—that is, direct products of semisimple and
Abelian Lie algebras—admit invariant scalar products: Cartan’s criterion allows us to use
the Killing form on the semisimple factor and any scalar product on an Abelian Lie algebra
is automatically invariant.

Another well-known example of Lie algebras admitting an invariant scalar product are
the classical doubles. LégtbeanyLie algebra and leff* denote the dual space on whigh
acts via the coadjoint representation. The definition of the coadjoint representation is such
that the dual pairingg ® h* — R is an invariant scalar product on the semidirect product
h x b* with h* an Abelian ideal. The Lie algebtax h* is called the classical double bf
and the invariant metric has split signature-) where dimh = r.

It turns out that all Lie algebras admitting an invariant scalar product can be obtained
by a mixture of these constructions. lgebe a Lie algebra with an invariant scalar product
(=, —)g, and leth act ong preserving both the Lie bracket and the scalar product; in other
words,h acts ong via skew-symmetric derivations. First of all, sirfgacts ong preserving
the scalar product, we have a linear map

h — so(g) = A%g
with dual map

c: Azg* = A%5 — b*,
where we have used the invariant scalar product to ideptilydg* equivariantly. Sincé
preserves the Lie bracketgnthis map is a cocycle, whence it defines a clabg[ H(g; b*)
in the second Lie algebra cohomologygivith coefficients in the trivial modulé*. Let

g x. h* denote the corresponding central extension. The Lie bracket gfthey* is such
thath* is central and ifX, Y € g, then

[X. Y] =[X.Y]g + (X, 1),
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where [-, —]g is the Lie bracket ofy. Now § acts naturally on this central extension: the
action onh* given by the coadjoint representation. This then allows us to defirgotligle
extensiorof g by b,

9(g, h) =h x (g xc h*)

as a semidirect product. Details of this construction can be fouddih1] The remarkable
fact is thato(g, h) admits an invariant inner product:

g b b*

g <_7 _>g 0 0
b 0 B id
h* 0 id 0 (16)

where B is anyinvariant symmetric bilinear form of and id stands for the dual pairing
betweer) andbh*.

We say that a Lie algebra with an invariant scalar product is indecomposabile if it cannot
be written as the direct product of two orthogonal ideals. A theorem of Medina and Revoy
[10] (see alsd12] for a refinement) says that an indecomposable (finite-dimensional) Lie
algebra with an invariant scalar product is one of the following:

(1) one-dimensional,

(2) simple, or

(3) adouble extension(g, h), where is either simple or one-dimensional agés a Lie
algebra with an invariant scalar product. (Notice that we can gakebe the trivial
zero-dimensional Lie algebra. In this way we recover the classical double.)

Any (finite-dimensional) Lie algebra with an invariant scalar product is then a direct sum
of indecomposables.

Notice that if the scalar product gnhas signaturép, ¢) and if dimh = r, then the
scalar product on(g, ) has signaturép +r, g + r). Therefore Euclidean Lie algebras are
necessarily reductive, and if indecomposable they are either one-dimensional or simple. Up
to dimension 7 we have the following Euclidean Lie algebras:

e RYwithd <7,
e su(2) @ RF with k < 4, and
o su(2) ®su(2) @ RFwithk =0, 1.

The conjecture clearly holds for all of them.

The Lorentzian case is more involved. Indecomposable Lorentzian Lie algebras are ei-
ther reductive or double extensiong, ), whereg has a positive-definite invariant scalar
product andy is one-dimensional. In the reductive case, indecomposability means that it
has to be simple, whereas in the latter case, since the scalar progistpmsitive-definite,

g must be reductive. A result of Figueroa-O’Farrill and Starjdili] (see alsd12]) then

says that any semisimple factorgsplits off resulting in a decomposable Lie algebra. Thus

if the double extension is to be indecomposable, themust be Abelian. In summary, an
indecomposable Lorentzian Lie algebra is either simple or a double extension of an Abelian
Lie algebra by a one-dimensional Lie algebra and hence solvable (se§l@).,
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These considerations make possible the following enumeration of Lorentzian Lie algebras
up to dimension 7:

(1) EX-twithd < 7,

(2) EY* @ s0(3) with k < 3,

(3) Ef @ so0(1, 2) with k < 4,

(4) so(1,2) ®s0(3) @ EFwithk =0, 1, or
(5) o(E* R) ® EX withk =0, 1,

where the last case actually corresponds to a family of Lie algebras, depending on the action
of R on E*. The conjecture holds manifestly for all cases except possibly the last, which
we must investigate in more detalil.
Lete;, i = 1,2, 3, 4, be an orthonormal basis i, and lete_ € R ande,. € R*, so
that together they span(E4, R). The action ofR onR* defines a map : R — A2R%,
which can be brought to the forp(e_) = we1 A e2 + Bes A e4 via an orthogonal change
of basis inE* which moreover preserves the orientation. The Lie bracketglst, R) are
given by

[e—, e1] = wer, [e—, e2] = —aeq,
[e1, 2] = ey,  [e—,e3] = Pea,
[e—, es] = —Pe3, [e3, eq] = Bey,

and the scalar product is given (up to scale) by
<€_,8_) :b, <€+,€_) =1» (@i,@j) =8I]

The first thing we notice is that we can get= 0 without loss of generality by the auto-
morphism fixing alle;, e, and mapping_ +— e_ — (1/2)be;.. We will assume that this
has been done and thiat_, e_) = 0. A straightforward calculation shows that the 3-form
F takes the form

F=ae_NeiNex+ Pe_ Ne3 A ey,

whence the conjecture holds.
2.6. Proof forF e A*E®

In the absence (to our knowledge) of a structure theorem for metrie algebras, we
will present the verification of the conjecture in the remaining cases using the “brute-force
approach explained earlier.

Choose an orthonormal badig, e, ..., eg} for which 1120F = aess + Besg + yers,
wheret12 means the contraction @f by ej».

Suppose thak, 8 andy are generic. In this case, the equation§, F] = 0 says that
the only terms inF' which survive are those which are invariant under the maximal torus
of SO(6), the group of rotations in the six-dimensional space spannégtyy, ..., es};
that is,

F = ae1234+ Be12se+ ye1278+ dezase+ e3478+ nesgrs
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Now, t13F = —aep4, Whence the equatiompBF, F] = 0 impliesthatd =y = 8§ = ¢ = 0,
violating the condition that;>F be generic.

In fact, this argument clearly works faf > 4 so that ford > 4 we have to deal
with non-generic rotations. Non-generic rotations correspond to (conjugacy classes of)
subalgebras ofo(6) with rank strictly less than that ab(6):

(1) sud: o+ B+ y =0 butalle, 8, andy non-zero;
(2) su(2) x u(l): @ = B # y, but again all non-zero;
(3) u(1) diagonala =B =y #0;

(4) so(4): y = 0anda # 8 non-zero;

(5) su(2): y =0ande = B8 # 0; and

(6) s0(2): 8=y =0anda # 0.

We now go down this list case by case.

2.6.1. su(3)

Whenu12F is a generic element of the Cartan subalgebra eid@8) subalgebra ofo(6)
the only terms inF which satisfy the equationipF, F] = 0 are those which have zero
weights relative to this Cartan subalgebra. EBt= (e1, e2)L. ThenF can be written as

F =e12 AN 112F + G,
wheregG is in the kernel of1,, namely
G=e1NG1+e2NGo2+ G3,

whereG1, G, € A3E® andG3 € A*ES. We have investigated the decompositioSr®
undersu(3) in the previous section. The representatittE® decomposes into

AES =10 8a[3],

whence it is clear where the zero weights are: they are one in the trivial represefitation
and two in the adjoin8. This means that in this case together with the zero weights of the
ASE® representations a total of seven term&mn

G1=A1821 + A2822, G = A3821 + Aaf22, G3 = p1e3456+ H2e3478+ 113€5678,
where
£21 = e357 — €368 — €458 — €467, 2o = e358+ €367+ €457 — €468 (17)

are the real and imaginary parts, respectively, of the holomorphic 3-fafftimought of as

C3 with thesu(3)-invariant complex structur@ = ¢34+ esg+ e7g. We still have to freedom

to rotate by the normaliser in SO(6) of the maximal torus in SU(3)hdt determines. An
obvious choice is the U(1) generated by the complex structure. This is not in SU(3) but in
U(3) and has the virtue of acting d& = £21 + i£2, by multiplication by a complex phase.
This means that we can always cho®a® be real, thus settingy = 0, say. Analysing the
remaining equations;jF, F] = 0 we see that andg are constrained t@ = +p, violating

the hypothesis that they are generic.
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2.6.2. su(2) x u(1)

Let us considesr = 8, the other case being similar, in fact related by conjugation in O(4),
which is an outer automorphism. The equationf, F] = 0 says that the only terms iR
which survive are those corresponding to zero weights ofili2) x u(1) subalgebra of
s0(6). It is easy to see that°E® has non-zero weights, whereas the zero weighi$4iR®
are the Hodge duals of the following 2-forms:

€34, €56, €78, €351 €46, €36 — €45.

Conjugating by the anti-self-dual SU(2) we can set to zero the coefficients of the last two
forms, leaving

F = a(e1234+ e1256) + ve1278+ 1€3456+ (2€3478+ [13€5678

as the most general solution of{F, F] = 0. Now the equation{sF, F] = 0, for example,
implies thate must vanish, violating the hypothesis. This case is therefore discarded.

2.6.3. u(1) diagonal

Inthis casey12F = a(e34+ es6+ e7g8) belongs to the diagonal1) which is the centre of
u(3) C s0(6), whereso(6) acts on thé® spanned bye;}3<i<s. There are no zero weights
in A3E®, but there are nine i *ES: the Hodge duals af(3) ¢ s0(6) = AZES. However
we are allowed to conjugate by the normalisen ) in s0(6) which isu(3). This allows
us to conjugate the invariant 2-forms to lie in the Cartan subalgebr&3pf In summary,
the solution to {12F, F] = 0 can be written in the form

F = a(e1234+ e1256+ €1278) + H1€3456+ U2e3478+ [13€5678

Now we consider, for example, the equatiopp[, F] = 0 and we see that must vanish,
violating the hypothesis. Thus this case is also discarded.

Notice that all the cases where the 2-forgpF has maximal rank have been discarded,
often after a detailed analysis of the equations. This should have a simpler explanation.

2.6.4.50(4)
In this casa12F = ae34 + Bess, Wherea and 8 are generic. This means that the most
general solution ofijoF, F] = 0 is given by

F = ae1234+ Be12se+ G,

wheregG is of the formeq1 A G1 + e2 A G2 + G3, whereG1, G2 € ASE® andG3z = AES,
whereE® is spanned byfei}a<i<s, and where thes; have zero weight with respect to
thisso(4) algebra. A little group theory shows th@t andG» are linear combinations of
the four monomial®s47, e3as, es567, eseg; WhereasGs is a linear combination of the three
monomialsesse, €3478, ese7s We still have the freedom to conjugate by the normaliser in
SO(6) of the maximal torus generateddpyF, which includes the SO(2) of rotations in the
(78) plane. Doing this we can set any one of the monomiadg N G1, saye1347, t0 zero.

In summary, the most general solution gh|F, F] = 0 can be put in the following form:

F = ae1234+ Be1ose+ 1e3456+ p2e3478+ 3ese7g+ A1e1348+ Aoe1se7
+ A3e1568+ Aae2347+ Ase23ag+ Aee2se7 + Areoses
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Analysing the remaining equationg F, F] = 0 we notice that genericity of andg are
violated unlesgt1 = 0 anduszuz = af. Given this we find that the most general solution is
F = ae1234+ Perose+ (3ese78+ (2e3478+ vi(ee1348+ [L3€2567)
+ v2(Be1se7 — 2e2348) + v3(Beises+ (£2€2347)
subject to
vivg=—1 and uszu2 = ap. (18)

These identities are precisely the ones that allow us to refwidiea sum of two simple forms

F1 = (ae1 — p2(vzer — v2eg)) A (€2 + vieg) A e3 A ea,
F> = (Be1 — pavie7) A (e2 + v2e7 + v3es) A es A es,
which moreover are orthogonal.
2.6.5. su(2)

In this case12F = a(e34+ esp), Wwhere without loss of generality we can aet 1. This
means that the most general solution@$F, F] = O is given by

F = e1234+ e1o56+e1 A G1+e2 A G2+ Gg,

whereG1, G2 € A%E® andG3 = A*E®, whereE® is spanned bye;}3<;<g, and where the
G, have zero weight with respect to tlis(2) algebra. A little group theory shows th@g
andG» are linear combinations of the following eight 3-forms:

€34 + esgi, €34 — €56, €35 + €46, €36 — €45,

wherei can be either 7 or 8; where@ is the Hodge dual (i) of a linear combination
of

€34+ esp, €34 — €56, €35+ €46, €36 — €45.
Using the freedom to conjugate by the normalisesiaf?) in so(6) we can choose basis
such thaiG 3 takes the form

G3 = pi1e3ase+ [L2e3478+ U3es678

This means tha¥' takes the following form:

F = e1234+ e1256+ (t1€3456+ [12€3478+ 113€5678 + A1€1347 + A2e1348+ A3e1567
+ Age1s68+ A5e€2347 + A6e2348+ A7e2s67 1+ Agerseg + 01(e1357 + €1467)
+ 02(e1367 — €1457) + 03(e1358+ €1468) + 04(e1368 — €1459)
+ o5(e2357+ €2467) + 06(€2367 — €2457) + 07(e2358+ €2468)
+ og(e2368 — €2459)-

This still leaves the possibility of rotating, for example, in the (78) plane and an anti-self-dual
rotation in the (3456) plane. Rotating in the (78) plane allows us taget 0, whereas
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an anti-self-dual rotation allows us to s&f = 0. Imposing, for example, the equation
[t25F, F] = O tells us thati; = 0, whereas the rest of the equations also saydhat 0.
It follows after a little work that ifu; # O we arrive at a contradiction, so that we take
n1=0.

We now have to distinguish between two cases, depending on whetherof aqtials
wus. If w2 # s, then allo; = 0, and moreover takes the form

F = e1234+ e1256+ p2e3478+ (13e5678 + A2(e1348+ 1L3€2567)
+ A3(e1567 — 2€2348) + Aa(e1568+ 12€2347),
subject to the equations
Ahg=—-1 and puouz=1. (29)

These equations are precisely what is needed to Wrée a sum of two orthogonal simple
forms F = Fy + F», where

F1=(e1 — u2(Age7 — Azes)) A (e2 + Azeg) A ez Aeal?
= (e1 — u3rzer) A (e2 + Azer + Ages) A es A eg.
Finally, we consider the cage = u3, which is inconsistent unlesﬁg = 1. Then the most
general solution takes the form

F = e1234+ e1256+ p2(e3a7s+ es678) + A2(e1348+ (2e2567)
+ Az(e1567 — U2€2348) + ra(e1s68+ (12€2347)
+o1(e1357+ e1467+ 2€2358+ [12€2468)

+ 03(e1358+ €1468 — 142€2357 — U2€2467)
+04(e1368 — €1458 — [12€2367 + [12€2457),

subject to the following equations:
A304 = 0 = 0104, (A2 — Ag)o1 + Az0o3 =0, 012_ + (732, + Ug =1+ loAa.
(20)
Let us rewriteF in terms of (anti)self-dual 2-forms in the (1278) and (3456) planes:
F =[(e12+ 112e78) + 3A3(e17 — poe2s) + 3(h2 + Aa)(e18 + poezr)]
A(ezs+ esp) + (e17 + 2e28) A [o1(e35 + ea6) — 3A3(e3s — esp)]
+ (e18 — poe27) A [03(ess + eag) + aless — eas) + 3 (A2 — Aa)(eas — 3sp)].
Notice that the first two equations {80) simply say that the two anti-self-dual 2-forms

1
o1(e3s+ es6) — 5A3(e34 — e56),

03(e35 + e46) + 0a(e36 — ea5) + 3 (A2 — A4)(e34 — 356)
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are collinear. Therefore performing an anti-self-dual rotation in the (36)—(45) direction, we
can eliminate thess+ e46 andess — e45 components, effectively setting = o3 = 04 = 0.
This reduces the problem to the previous case, except thatiaew ;.

2.6.6.50(2)
Finally, we consider the case wheieF = aeszs. The most general has the form

F=ae123a+e1 ANG1+e2 AGo2+ Gg3,

whereG1, G, € AE® andG3 € A*ES, whereE® is spanned bye;}3<;<g. Such anF will
obey [12F, F] = 0 if and only if theG; have zero weights under tlse(2) generated by
t12F. This means that each 6f;, G2 is a linear combination of the eight monomials

€345, €346, €347, €348, €567, €568 €578, €678

Using the freedom to conjugate by the SO(4) which acts in the (5678) plane, we can write
the most general; as a linear combination of the monomiag s, e347s, €3456 This still
leaves the possibility of rotating in the (56)- and (78) planes separately. Doing so we can
set to zero the coefficients of sayggsg andese7s, leaving a total of 17 free parameters

F = e1234+ (13456 + [L2e3478+ (3e5678 + A1€1347 + A2€1348+ A3e1567 + Ade1ses
+ A5e2347+ Age2348+ A7e2567+ 01€1345+ 02¢1346+ 03€1578+ 04€1678
+ 052345+ 06€2346+ 07€2578,
and where we have sat= 1 without loss of generality. We now impose the rest of the

equationsj F, F] = 0. We first observe that ji.; # 0, thenuy = uz3 =1; =03 =04 =
o7 =0, leaving

F = e1234+ [t1e3456+ 01€1345+ 02¢1346 + 05€2345+ 06€2346,
subject to

0106 — 0205 = Ji1, (21)
which guarantees that is actually a simple form

F = (e1 — ose5 — 0gep) N (e2 + 0165 + 02e6) A €3 A ea,

which is a degenerate case of the conclusion of the conjecture.

Let us then suppose that = 0. We next observe that if; # 0 thenuz = o, = A3 =
A4 = A7 = 0. This is again, up to a relabelling of the coordinates, the same degenerate case
as before and the conclusion still holds.

Finally let us suppose that bofly and 2 vanish. We must distinguish between two
cases, depending on whethes also vanishes or not. |3 = O then we have thak is
given by

F = e1234+ A1e1347+ A2e1348+ A5e2347+ Age2348+ 01€1345+ 02€1346
+ 05€2345+ 06€2346,
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subject to the equations
A2A5 = A1Ag, 0205 = 0106,
A105 = A501, Ae02 = A20%, (22)

A106 = A502, Ae01 = A205,

which are precisely the equations which allow us to rewfitas a simple formF =
01 A 02 A e3 A eq, Where

01 = e1 — o5e5 — 0ges — Ase7 — Ages, 02 = ez + o1e5 + 02e6 + A1e7 + Ages.
Finally suppose thats # 0. In this casd is given by
F = e1234+ u3ese7s+ A2(e1348+ [13€2567) + As(e€2347+ [L3€1568)
+ Ag(e2348 — u3e1567) + 02(e1346+ (3e2578) + 05(€2345+ L3€1679)
+ o6(e2346 — U3€1579),
subject to the equations
MoA5 = A205 = 02A5 = 0205 =0 and Agoo = A206. (23)

We must distinguish between three cases:

(1) 22 #0,
(2) »2 = 0ando2 # 0, and
(3) A2 =02=0.

We now do each in turn.
If A2 # 0, F is given by

F = e1234+ 3ese78+ A2(e1348+ 13e2567) + Ae(€2348 — U3€1567)
+ 02(e1346+ 3€2578) + 06(€2346 — U3€1579),

subject to the second equation(#8). This is precisely the equation that allows us to write
F as a sum of two simple form8 = F; + w3 F»2, where

F1 = (e1 — oses — Apes) A (e2 + 02e6 + A2eg) A e3 A ea,
F> = e5 A (eg + ogge1r — 02e2) A e7 A (eg + Age1 — Aoe2).

Notice moreover thak; and F» are orthogonal.
If A2 =0 andoy # 0, F is given by

F = e1234+ p3eserg+ 02(e1346+ 113e2578) + 06(€2346 — 13€15789),
which can be written as a sum= F; + u3F> of two simple forms

F1 = (e1 — o6es) A (€2 + 02e6) A e3 A ea,

F> = e5 A (eg + 0ger — 02e2) A e7 A es,

which moreover are orthogonal.
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Finally, if ., = o2 = 0, F is given by

F = e1234+ 3ese78+ As(e2347+ 13e1s68) + Ag(€2348 — 13€1567)
+ o5(e2345+ u3e1678) + 06(e2346 — 143€1579),

which can be written as a sum of two orthogonal simple fofins F1 + u3F», where

F1 = (e1 — oses — ogeg — Ase7 — Ageg) A e2 A e3 A ey,
F> = (e5+ o5e1) A (eg + o6e1) A (e7 + Ase1) A (es + Aper).

2.7. Proof forF € A*E’

Choose an orthonormal bagig, e, .. ., e7} for which11oF = ae34 + Besg, wherero
means the contraction @f by e1».

Suppose that and g are generic. In this case, the equation F, F] = 0 says that the
only terms inF which survive are those which are invariant under the maximal torus of
SO(5), the group of rotations in the five-dimensional space spanngesbys, .. ., e7};
that is,

F = ae1234+ Be12s6+ yessse

Now [i23F, F] = 0 implies thax = 0, violating the condition that > F be generic.
Non-generic rotations correspond to (conjugacy classes of) subalgebsa&bpfvith
rank strictly less than that ab(5):

(1) su(?2):a=p#0;and
(2) s0(2): B =0andu # 0.

We now go down this list case by case.

2.7.1. su(2)
Inthis casei2F = a(e3s+e56). This means that the most general solution off, F] =
0 is given by

F = ae1234+ ae1os6+e1 A G1+e2 A G2+ G,
whereG1, G, € A3E® andG3 = A%E®, wherelE® is spanned bye;}3<;<7, and where the

G, have zero weight with respect to tlis(2) algebra. A little group theory shows th@g
andGy» are linear combinations of the following eight 3-forms:

€347+ €567, €347 — €567, €357 1 €467, €367 — €457,

whereas

G3 = uessss
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This means thaf’ takes the following form:

F = ae1234+ ae1256+ pesqse+ A1(e1347+ e1s567) + A2(e1347 — e1567)
+ A3(e1357+ e1467) + Aa(e1367 — €1457)
+ p1(e2347+ e2567) + p2(e2347 — €2567) + p3(€2357+ €2467)

+ pa(e2367 — €2457)-
Rotating in the anti-self-dual (3456) plane allows us to)set= 14 = 0. Imposing, for
example, the equationzgF, F] = 0 and [5F, F] = O tells us thath; = A2 = 0. This
allows us to rotate again in the anti-self-dual (3456) plane tpset p4 = 0 and imposing
[t13F, F] = 0 and [15F, F] = 0 to find thatp; = p2 = 0. The remaining equations imply
thata? = 0 which is a contradiction.

2.7.2.50(2)
Finally, we consider the case wheieF = aeszs. The most genera has the form
F=ae123a+e1 ANG1+e2 ANGo2+ G3,

whereG1, G, € AE® andG3 € A*E®, whereE® is spanned bye;}3<;<7. Such anF will
obey [12F, F] = 0 if and only if theG; have zero weights under the(2) generated by
112F. This means that each 6f,, G» is a linear combination of the four monomials

€345, €346, €347, €567

Using the freedom to conjugate by the SO(3) which acts in the (567) plane, we can write

G3 = uessss

SoFis

F = ae1234+ pe3ase+ A1e1345+ Aze1346+ Aze1567 + 012345+ 02€2346 + 03€2567.

Rotating in the (56) plane, we can set= 0. Suppose that # 0. In this casetggF, F] =
0 implies thatis = o3 = 0. Next observe thats4F is a 2-form inE* spanned by
{e1, e2, e5, eg}. If t134F hasrank 4 then itis the previous case which has led to a contradiction.
If it has rank 2, then the statement is shown.

It remains to show the statement for= 0. In this case, after performing a rotation in
the (56) plane and setting = 0, we have

F = ae1234+ A1€1345+ A3e1567 + 01€2345+ 022346+ 03€2567.

One of the [13F, F] = 0 conditions implies thatio2 = 0. If A1 = 0, using a rotation in
the (56) plane, we can set = 0 as well. The conditiona{sF, F] = 0 and [23F, F] =0
imply thati3 = 03 = 0. Thus

F = ae1234+ 0162345 = (ae1 — 01e5) A €234

and it is simple. If instead> = 0, using a rotation in the (12) plane we can set= 0.
Then an analysis similar to the above yields thas simple.
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2.8. Proof forF € A*E? ford =5, 6

Choose an orthonormal basisiifi{er, e2, . . ., eg} for whicht12F = aezs+ Beses, where
t12 means the contraction @ by ej>.

Suppose that and g are generic. In this case, the equation ¥, F] = 0 says that the
only terms inF which survive are those which are invariant under the maximal torus of
S0O(4), the group of rotations in the five-dimensional space spanngeshus, .. ., eg);
that is,

F = ae1234+ Be12se+ yessse

Now [i23F, F] = 0 implies thatyg = 0, violating the condition that>F be generic.
Non-generic rotations correspond to (conjugacy classes of) subalgebsa&pfvith
rank strictly less than that ab(4):

(1) su(2):a=pB+#0;and
(2) s0(2): B =0anda # 0.

We now go down this list case by case.

2.8.1. su(?2)
Inthis casei12F = a(e3s+es56). This means that the most general solutiongff, F] =
0 is given by

F = ae1234+ aeros6+e1 A G1+e2 A G + G,

whereG1, G € ASE* andG3 = A*E?, whereE* is spanned bye;}3<;<6, and where the
G; have zero weight with respect to this(2) algebra. A little group theory shows that
G1=Gy=0and

G3 = pessse
This means thaf takes the following form:

F = ae1234+ ae1256+ pessse

Imposing [23F, F] = 0 we find thaix?® = 0 which is a contradiction.

2.8.2.50(2)
Finally, we consider the case wheieF = wez4. The most general has the form

F =ae1p3a+e1 AG1+e2 AGo+ Ga,

whereG1, G, € ASE* andG3 € A*E?, whereE* is spanned bye;}3<;<g. Such anF will
obey [12F, F] = 0 if and only if theG; have zero weights under tlse(2) generated by
t12F. This means that each 6f1, G» is a linear combination of the two monomiaiss
andessg, Whence

G3 = uessse
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and

F = ae1234+ pe3ase+ A1e1345+ A2e1346+ 01€2345+ 02€2346.

Rotating in the (56) plane, we can set= 0. Suppose that +# 0. Next observe thagsF
is a 2-form inE* spanned byes, e, es, eg}. If 134F has rank 4 then it is the previous case
which has led to a contradiction. If it has rank 2, then the statement is shown.

It remains to show the statement #be= 5. In this case

F = ae1234+ Be1sza+ yeosza

The 2-formissF has rank 2 irE3 spanned bye1, >, e3} and the statement is shown.
2.9. Proof forF € ASRE10

We shall not give the details of the proof of the conjecture in this case. This is because
the proof follows closely that of € A°EL® which will be given explicitly below. The
only difference is certain signs in the various orthogonality relations that involve the “time”
direction. The rest of the proof follows unchanged.

2.10. Proof forF € ASEL®

Let us choose a pseudo-orthonormal bdsjses, ..., eg} with ¢g time-like in such a
way that the 2-formgi2F takes the form

012F = aezq + Besg + yers.

Depending on the values of g andy we have the same cases as in the casé ef 4
treated in the previous section. The most gengrahn be written as

F = aep1234+ Beor2se+ yeo1278+ e12 A Go+epp A G1+ eor A G2 +eg
AHo+e1 A Hi+e2 A Hy+ K, (24)

whereG; € ASE’, H; € A*E” andK e ASE’, whereE’ is spanned bye;}3<;<g. For all
values ofy, 8, y, the 2-formyg12F is an element in a fixed Cartan subalgebrsog6), and in
solving [o12F, F] = 0 we will be determining whiclt;;, H; andK have zero weights with
respect to this element. We will first decompose the relevant exterior powgfswéo(6)
representations. First of all, notice tiéft = E & R, whereE® is the vector representation

of s0(6) andR is the span oég. This means that we can refine the above decomposition of
F and notice that eacti; and eachH; will be written as follows:

Gi=L;i+M;neyg, and H; = N;+ P; A eg,

whereM; € A%ES, L;, P, € ASE® andN; € A*ES. SinceA*E® =~ AZES, we need only
decomposet?E® and A3ES. Clearly A2E8 = s0(6) is nothing but the 15-dimensional
adjoint representation with three zero weights corresponding to the Cartan subalgebra,
whereasA3[ES is a 20-dimensional irreducible representation having no zero weights with
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respect tao(6); although of course it many have zero weights with respect to subalgebras
of s0(6). Finally, let us mention that as we saw in the previous section, we will always be
able to choos& to be a linear combination of the monomiadgseg e34789 es6789bY USing
the freedom to conjugate by the normaliser of the Cartan subalgebra in whiéhlies.

We have different cases to consider depending on the valugesgadindy and as in the
previous section we can label them according to the subalgebg®fin whose Cartan
subalgebra they lie:

(1) so(6): @, B andy generic;

(2) su(3): a4+ g+ y =0 but alle, 8, andy non-zero;
(3) su(2) x u(l): « = B # y, but again all non-zero;
(4) u(1) diagonala = 8=y #0;

(5) s0(4): y = 0 anda # B8 hon-zero;

(6) su(2): y =0ande = 8 # 0; and

(7) s0(2): B =y =0anda # 0.

We now go down this list case by case.

2.10.1. s0(6)
The generic case is easy to discard. The most gefieohleying [o12F, F] = 0 has 21
free parameters:

F = aep1234+ Beo1256+ veo1278+ 111€345691 2e34789+ [L3e56789+ A1€01349
+ A2€02349+ A3¢12349+ A4€01569+ A5€02569+ A6e€12569+ A7€01789+ Age02789
+ Aoe12789+ 01€03456+ 0203478+ 03€05678
+ 04e1345+ 05€13478+ 06€15678+ 07€23456+ 08€23478+ 09€25678

If we now consider the equatiomfsF, F] = 0 we see that it is not satisfied unless either
« or B are zero, violating the condition of genericity.

2.10.2. su(3)
As discussed above, tha(3) zero weights in the representation$E® and A3E® are
linear combinations of the following forms:

e34, ese, e7g, $21, $2o,

whereg2; are defined ifEq. (17) The most generdf satisfying [o12F, F] = 0 is given by

F = a(ep1234— e01279 + B(eo1256— €01278 + [41€34569+ 142€34789+ [L3€56789
+ A1€01349+ A2€02349+ A3e12349+ A4e01569+ Asen2569+ Aee12569+ A7€01789
+ Agen2789+ Age12789+ 01€03456+ 02€03478+ 03€05678+ 04€1345+ 05€13478
+ 06e15678+ 07€23456+ 08e23478+ 09e25678+ 1601 A §21 + p2eo2 A £21
+ p3e12 A §21 + paeor A 22 + psep2 A §22 + pee12 A §22 — T1epg A §21
— Toe19 A §21 — 13€29 A §21 — T4e09 A 22 — Tse19 A §22 — Tgeag A §22.
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There are thus 33 free parameters, which we can reduce to 32 as was done in the previous
section. Inspection of (some of) the remaining 30239 equatignk, [F] = 0 shows that
andg are constrained to obey= =+, violating the hypothesis of genericity.

2.10.3.5u(2) x u(l)

We now lete = B, with the opposite case being related by an outer automorphism. As
mentioned above 3E8 has no zero weights, whereas thosa 6 are linear combinations
of the following forms:

€34+ ese, €34 —e5e, €351 €46, €36 — €45, €78.

The first and last are the generators of the Cartan subalgebt@?®fx (1) whereas the
remaining three are the generators of the anti-self-@lu@) C so(4). Using the freedom to
conjugate by the anti-self-dual(2) we will be able to eliminate two of the free parameters
in the expression foF’, which after this simplification takes the following form:

F = a(ep1234+ €01250 + ve01278+ 111€34569+ [12€34789+ [43€56789+ A1€01349
+ A2€02349+ Aze12349+ Aae01569+ A5€02569+ Ase12569+ A7€01789+ A8e02789
+ Age12789+ 01€03456+ 02€03478+ 03€05678+ 04¢1345+ 05€13478+ 06€15678
+ 07€23456+ 08e23478+ 09e25678+ 1(€01359+ €01469 + 02(€02359+ €02469)
+ p3(e12359+ €12469 + p4(€01369 — €01459 + P5(€02369 — €02459
+ pe(e12369— €12459 + T1(e04678+ €03579 + T2(€04578 — €03679)
+ t3(e14678+ €13579 + Tale1a578— e13679) + T5(e24678+ €23579)
+ t6(€24578 — €23679),

which depends on 33 parameters. Inspection of the remaining equations immediately shows
thatay = 0, violating genericity.

2.10.4. u(1) diagonal

We now lete = B = y. As mentioned in the analogous case in the previous section,
A3E® has no zero weights, whereas thoseifiE® are linear combinations of the(3)
generatorsy;:

e35+ eq5, e45— e36, €37+ e48, eq7 — €3g,
e57+ €68, €67 — €58, €34, €56, e78.

We have the freedom to conjugate by the normaliser ofttiisin so(6), which is precisely
u(3). This means that we can conjugate th@) generators in the fornk in (24) to a
Cartan subalgebra af(3). In summary the most generBlcontains 57 parameters and can
be written as

F = a(ep1234+ e01256+ €01278) + 111€34569+ [12€34789+ [43€56789
9 9
+ Z(M601+)»9+i€02+)»18+i612) A wi+ Z(Gieo + 0g1ie1 + 0181i€2) A *w;,
i=1 i=1
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wherexw; € A*ES are the Hodge duals of the;. Inspection of a few of the remaining
equations shows that they are consistent ondy4f 0, which violates the hypothesis.

As in the eight-dimensional case treated in the previous section, there are no solutions
wheng12F has maximal rank, a fact which again lacks a simpler explanation.

2.10.5.50(4)

Letio12F = aess+ Bese With a and generic. The condition thatd;oF, F] = 0 means
that F takes the form given bfq. (24)whereG; € A3E’ are linear combinations of the
six monomials

€347, €348, €349, €567, €568, €569,
where theH; € A%E’ are linear combinations of their duals

€5689, €5679, €5678 €3480, €3479, €3478
The 5-formK is as usual a linear combination of the three monoméalsss, e34789 56789
In summary,F is given by the following expression containing 39 free parameters:
F = aep1234+ Peo1256+ 11€34569+ 12€34789+ H3€56789+ A1€01347+ A2€02347
+ Aze12347+ Aaeo1348+ As€02348+ Ae12348+ A7€01349+ Age02349
+ Age12349+ 01€01567+ 02€02567+ 03€12567+ 04€01568+ 05€02568
+ 0612568+ 07€01569+ 08€02569 1 09€12569+ 01€03478+ p2€13478+ 03€23478
+ 04€03479+ 05€13479+ P6€23479+ P7€034891 £8€134891 £9€23489+ T1€05678
+ T2e15678+ T3€256781 T4€05679+ T5€156791 T6€256791 T7€05689
+ T8e15689+ T9€25689

We can still rotate in the (12) and (78) planes and in this way set to zero two of the above
parameters, says andpgz, although we do not gain much from it. The equatiagstf, F] =

0 have solutions for every, 8. Settinge = 1 without loss of generality, we find thag = 0

and that all the variables are given in terms of thgvhich remain unconstrained:

T1 = U3A9, 01 = —M1309, pP1=A1r5— A2A4,
T2 = U3A8, 02 = 4308, 02 = AlAg — A3A4,
T3 = —U3A7, 03 = U307, 03 = A2Ag — A3As5,
T4 = —U3r6, 04 = [L3P6, 04 = A1ig — A2A7,
5 = —U3A5, 05 = —3P5, pP5= A1Ag— A3A7,
6 = W34, 06 = —[4304, P& = A2Ag — A3hs,
T7 = U3h3, 07 = —l303, P7 = A4A8 — A5A7,
T8 = U3h2, 08 = 302, P8 = A4hg — AeA7,
Tg = —3A1, 09 = U3p1, P9 = Ashg — Aelg,
and

H2 = A1Ashg — A3A5A7 + A2AgA7 + A3dalg — A1hers — A2A4Ag,
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subject to one equation
B = uaps. (25)

Remarkably (perhaps) these equations are precisely the ones that guaranteesthaie
written as a sum of two simple forms

F=00AN01AN02Ae3Aeq+ u3es A eg AbB7 A 6Bg A 0Og,

where
0o = eo + Age7 + Aeeg + Ageg, 07 = e7 + Azeo + Aze1 — Aea,
01 = e1 — Aoe7 — Ageg — Ageg, 0g = eg + Ageo + Ase1 — Ageo,
0> = e2 + A1e7 + Ageg + A7eg, g = eg + Ageg + Age1 — A7eo.

Notice moreover thad; 1 6; fori =0, 1,2 andj = 7, 8, 9, whence the conjecture holds.

2.10.6.5u(2)

Letio12F = a(eop1234+ eo1250), Where we can put = 1 without loss of generality. The
most general solution oidi2F, F] = O takes the forn{24) whereKk is as usual a linear
combination of the three monomiadssseg e34789 56789 the G; are linear combinations
of the following 3-forms:

€34 + esqi, €34 —es6, €35 + esa, €36 — €45, €789,
wherei = 7, 8, 9, and thef; are linear combinations of their duals. In total we have 81 free
parameters:
F = e01234+ e01256+ 1134569+ (2€34789+ [43€56789+ A1€01347+ A2€01348
+ A3e01349+ A4e01567+ A5e01568+ A6€01569+ Areo1789+ Ag(€01357+ €01467)
+ Ao(eo1358+ e01469 + A10(€01359+ €01469 + A11(€01367 — €01457)
+ A12(e01368— €01459 + A13(€01369— €01459
+ p1€02347+ p2€02348+ 03€02349+ P4€02567 1 P5€02568+ 0602569+ 07€02789
+ pg(e02357+ €02467) + p9(e02358+ €02468) + P10(€02359+ €02469)
+ p11(e02367— €02457 + p12(e02368 — €02459 + p13(€02369— €02459
+ 01€12347+ 02€12348+ 03€12349+ 04€12567+ 05€12568+ 06€125691+ 07€12789
+ og(e12357+ €12467) + 09(e12358+ €12468 + 010(€12359+ €12469
+ 011(e12367— €12457) + 012(€12368 — €12458 + 013(€12369 — €12459)
+ 11603456+ 12€03478+ 13€03479+ 14€03489+ 15€05678 1 116€05679 1 17€05689
+ ns(eo3s78+ eoa679 + n9(eo3s79+ €oa679 + n10(eo3ss9+ €o4689
+ n11(e03678 — €04578) + n12(€03679— €04579 + 113(€03689 — €04589
+ ¢1e13456+ P2e13478+ P3e13479+ Pae13a89+ Pse1s678+ Pee15679+ Prenses9
+ ¢g(e13578+ 14679 + Po(e13579+ €14679 + P10(€13589+ €14689)
+ ¢11(e13678 — €14579) + P12(€13679— €14579 + P13(e13689— €14589
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+ T1€23456+ T2€23478+ T3€23479+ T4€23489+ T5€25678+ T6€25679+ T7€25689
+ 18(e23578+ €24679 + To(e23579+ €24679 + T10(€23589+ €24689
+ 111(e23678 — €24579 + T12(€23679— €24579 + T13(€23689— €24589).

We notice first of all that the equationgdF, F] = 0 imply thati7 = p7 = o7 = 0 and
after close inspection of the equations one can see that there are no solutiong yate@s
which we will assume from now on.

One then must distinguish between two cases, depending on whetherof eqtials
us. Let us first of all consider the generic situatian # ©3. One immediately sees that
the following coefficients vanish:; = p; = 0; = n; = 1, = ¢; = 0 fori > 8, leavingF in
the following form:

F =e3sNG1+es6N G,

where

G1=-ep12+ u2e7gg+ A1e017 + Azeo1g + Azep19 + p1€027 + p2e028 + p3€029
+ 01e127 + 02e128 + 03€129 + N2eq78 + N3€079 + N4€089 + Pre178 + P3e179
+ ¢ae189 + 12278 4 T3€279 + T4€289

and

G2 =ep12+ [L3e789 + Aae017 + Aseo1s + Aseo19 + p4€027 + P5€028 + P6€029
+ 04e127 + ose128 + o6e129 + N5e078 + Nee079 + N7€089 + Pse17s + Peeirg
+ ¢re189 + T5e278 + TeC279 + T7€280.
Some of the remaining equations expressitBe¢’s andz’s in terms of thel’s, p’s and
o’'s:
N2 = M206, T2 = —[2A6, $2 = U2p6,
N3 = —U205, T3 = U2A5, 3= —U2p05,
N4 = U204, T4 = —U2A4, $a= U2p4,
N5 = U303,  T5 = —U3r3, ¢P5 = 4303,
ne = —WK302, Te = [A3A2,  ¢P6 = —U3P2,
N7 = U301,  T7 = —U3r1, ¢7 = 13p1,

whereas others in turn relatg, p; ando; fori = 4,5,6toA, p; ando; for j =1, 2, 3:

ra = pu3(p302 — p203), p4 = U3(r203 — A302), 04 = uz(Az2p3 — A3p2),

A5 = u3(p103 — p301), p5 = U3(r3o1 —Ar103), 05 = u3z(Azp1 — A1p3),

e = p3(p201 — p102), pe = K3(r102 — A201), 06 = U3(A1p2 — A2p1).
The remaining independent variables are subject to two final equations:

pa= Y (D" pr20x@ and uopz=1, (26)
€G3
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where the sum in the first equation is over the permutations of three letters and weighted by
the sign of the permutation. These equations guarante&thahdG, are simple forms:

G1=0gA01n02 and Go = uzb7 A O A Oy,
where

6o = eo + 01€7 + 02¢8 + o3¢y, 01 = e1 — p1e7 — p2eg — p3e,

02 = ex + A1e7 + Azeg + Azeg,

07 = e7 + 01e0 + p1e1 — Azez, 08 = eg + 02e0 + p2e1 — Aze,

09 = eg + 03e0 + p3e1 — Azez.
If we defined; = ¢; for i = 3, 4, 5, 6 then we see that th are mutually orthogonal and
hence that

F =00 AN01N0O02NA603N 6044 305 A0 A6O7 Abg A Oy

is a sum of two orthogonal simple forms.

Finally we consider the cage; = u3 which has no solution unlesu% = 1. Asinthe
case of 4-forms in eight dimensions treated in the previous section, we will show that we
can choose a frame where the coefficients; ando; vanish fori > 8, thus reducing this
case to the generic case treated immediately above.

Some of the equationgjf F, F] = 0 express the’s, r's and¢'s in terms of thel’s, p’s
ando’s, leavingF in the following form

F = ep1234+ e01256+ 12(e34789+ 56789 + A1(€01347 — h2€25689
+ A2(e01348+ (2e25679) + A3(€01349— [2€25679) + Aa(e01567 — [L2¢23489)
+ As(eo1568+ U2€23479) + A6(€01569 — (42€23479)
+ Ag(e01357+ €01467+ 223589+ 112€24689
+ Ag(e01358+ €01468 — U2€23579— [42€24679
+ A10(e01359+ €01469+ (2€23578+ U2€24679)
+ A11(e01367 — €01457+ [L2€23689 — 12€24589)
+ A12(€01368 — €01458 — [£2€23679+ U2€24579
+ A13(e01369— €01459+ [L2€23678 — U2€24579)
+ p1(e02347+ p2e15689 + p2(€02348— (2€15679 + P3(€02349+ [L2€15679)
+ pa(eozs67+ 2e13489 + p5(e02568 — H2€13479 + P6(€02569+ [L2€13479)
+ p8(e02357+ €02467 — 1213589 — 142€14689
+ po(eo2358+ €02468+ 1U2€13579+ 112€14679
+ p1o(eo2359+ €02469— 2€13578 — U2€14679)
+ p11(€02367 — €02457 — [£2€13689+ U2€14589
+ p12(€02368 — €02458+ [£2€13679 — U2€14579)
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+ p13(e02369— €02459— (2€13678+ U2€14578) + 01(€12347+ 12€05689

+ 02(e12348— (L2€05679 + 03(e12349+ U2€05679 + 04(€12567+ 142€03489)
+ o5(e12568 — U2€03479) + 06(€12569+ 142€03478)

+ og(e12357+ €12467— U2€03589— 142€04689)

+ o9(e12358+ €12468+ 1U2€03579+ 142€04679

+ o10(e12359+ €12469— £2€03578 — [£2€04679)

+ 011(€12367 — €12457 — [£2€03689+ 12€04589

+ 012(e12368 — €12458+ [£2€03679— 12€04579)

+ 013(€12369— €12459 — £2€03678+ U2€04579)-

Let us define the following (anti)self-dual 3-forms in the (012789) plane:

wy = eo12% poerge, Wi = €028 F H2e17o,

w] = €017 F Hoe2ge, w5 = €029+ poe1rs,

wzi = e018 = [2€279, w? = e127+ (2€089,

w3 = €019 F Hoea7s, W5 = €128 F H2€079,

wy = eo27E poe1ge, Wy = €129+ poeors,
and the following (anti)self-dual 2-forms in the (3456) plane:

@f = e34 =+ esp, @zi = €35 F €46, (“);E = e36 % ess,
in terms of which we can rewrit€ in a more transparent form:

9 9
F=07A (wa“ + Zujwﬁ) +Y) o,
i=1 i=1

where they;” are defined by

Vi =v; O] +280, +A110;, U, = v, O] + 190, + A1203,
U3 =v360; + 1100, + 11303, W =V, 01 + 080, + p11603,
Vg =v5 07 + p9O5 + 01203, Ve =g 01 + p1005 + 01303,
v =v,0; +080, + 01103, Vg =vg0; + 090, + 01203,

Yy =vg O + 0100, + 01303,
and where we have introduced the following variables
vp =30atre), vy =3(p1Epa), V7 =3(01E00),
+_ 1 +_ 1 +_ 1
v; =352t 1s5), vg =5(p2Ep5), vg = 5(02=E05),
+_ 1 +_ 1 +_ 1
vz =53+ re), vg = 5(p3Ep6), vy = 5(03 =% 06).

Some of the remaining equationg[F, F] = 0 now say that the nine anti-self-dual 2-forms
¥ are collinear. This means that by an anti-self-dual rotation in the (3456) plane we can
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setr; = p; = 0; = 0 fori > 8. We have therefore managed to reduce this case to the
generic caseu, # u3) except that nowto = ug; but this was shown above to verify the
conjecture.

2.10.7.50(2)

Let 1o12F = aep1234 Where we can puk = 1 without loss of generality. The most
general solution ofip1oF, F] = 0 takes the forn{24) where thek is as usual a linear
combination of the three monomiadssseg e34783 es6789 the G; are linear combinations
of the following 3-forms:

€345, €346, €347, €348, €349,
€567, €568, €569 €578, €579
€589, €678 €679 €689 €789

andtheH; are linear combinations of their duals. The most general solutiognyta] F] = 0
has 93 free parameters:

F = e01234+ (1€34569+ [12€34789+ 143€56789+ A1€01345+ A2€01346+ A3€01347

+ Aaeo1348+ Aseo1349+ Aee01567+ A7€01568+ Ageo1569+ Ageo1578

+ A10€01579+ A11€01589+ A12€01678+ A13€01679+ A14€01689+ A15€01789

+ 01€02345+ 02€02346+ 0302347+ 04€02348+ 05€02349+ 06€02567 1+ 07€02568

+ 08€02569+ 09€02578+ 010€02579+ 011€02589+ 01202678+ 013€02679

+ 014€02689+ 015€02789+ 01€12345+ pP2€12346+ 03€12347+ 04€12348

+ p5e12349+ pee12567+ P7€12568+ P8€12569 1 L9€12578+ P10€12579

+ p11€12589+ p12e12678+ 013€12679+ 014€12689+ P15€12789+ T1€03456

+ T2€03457+ T3€03458 1+ T4€03459+ T5€03467+ T6€03468 1 T7€03469+ T8€03478

+ 7903479+ T10€03489+ T11€05678+ T12€05679+ T13€05689 1 T14€05789

+ T15€06789+ @1€13456+ P2e13457+ P3e13458+ Pae13450+ Pse13a67

+ Pee13468+ P7e13469+ P8e13478+ Poe13479+ P10e13489+ P11€15678

+ ¢12e15679+ P13¢15689+ P14€15789+ P15¢16789+ N1€23456+ 12¢23457

+ 13€23458+ 114€23459+ 1523467+ 16€23468 1 117€234691 118€23478+ 119€23479

+ 110€23489+ 111€25678 1 112€25679+ 1113625689 1 114€25789+ 1115€26789
First we consider the case wheg # 0. This means that many of the parameters must
vanishiu, = uza =0, = ¢ =z = 0fori # 1, 4,7 andr; = p; = o; = 0 for
j #1,2,5. The resultingF’ can be written ag” = e34 A G, where

G = ep12 + 11e569 + A1e015 + A2e016 + Aseo19 + 01€025 + 02026 + 05€029
+ p1e125+ p2e126 + pse129 + T1€056 + Tae059 + T7€069 1+ P1e156 + Pae1s9
+ ¢7e160 + n1e256 + Nae259 + N7e269,
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T1 = A102 — A201, ¢1=A102 —A201, N1 = 0102 — 0201,
T4 = A105 — A501, ¢4 = A1p5 — A5P1, 74 = O1P5 — 0501,
T7 = A205 — A502, @7 = A2p5 — A5P2, 17 = 0205 — 0502,
and subject to the equation
M1 = A50201 — A20501 — A5p102 + A10502 + A2p105 — A10208, (27)

which implies thatG (and henceF) is simple:

G = (eo + p1es + p2e6 + pseg) A (e1 — o1e5 — 02e6 — 05e9)
A (€2 + Aies + Apep + Aseg).
Let us assume from now on that = 0. If u2 # 0 then the same conclusion as above
obtains and is simple. Details are the same up to a permutation of the orthonormal basis.
We therefore assume thap = 0. If u3 = 0 then the following coefficients vanish; =
¢i=1=0fori > 11 andr; = p; = 0; = 0 for j > 6, resulting inF = e34 A G, with
G = ep12 + A1€015 + A2ep16 + A3e017 + Aae018 + Asep1g + 01e025 + 02€026
+ 03e027 + 04€028 + 05€029 + p1€125 + p2e126 + P3€127 + pP4e128 + P5€129
+ T1€056 + T2€057 1 T3€058 1+ T4€059 + T5€067 + T6€068 1 T7€069 1+ T8€078
+ T9ep79 + T10€089 + P1e156 + P2e157 + P3e158 + Pae159 + Pse17 + Pee1es
+ ¢re169 + @ge178 + Poe179 + P10e189 + N1e2s6 + N2e257 + n3e258 + N4e259
+ ns5e267 + nee268 + N7€269 + Nge278 + N9e279 + n10€289,

where

1= r1p2 — r2p1,
$2 = A1p3 — A3p1,
$3 = A1pa — A4p1,
¢4 = A1p5 — A5p1,
¢5 = *2p3 — A3p2,

€G3

n1 = 0102 — 0201,
N2 = 01p3 — 03pP1,
13 = 0104 — 041,
N4 = 0105 — 0501,
N5 = 0203 — 0302,

71 = A102 — A201,
T2 = A103 — A301,
T3 = A104 — A401,
T4 = A105 — A501,
75 = A203 — A302,

$6 = A2pa — A4p2, N = 0204 — 04P2, T = A204 — L4072, (8)
7 = A2ps — A5p2, N7 = 02p5 — 0502,  T7 = A205 — A502,
8 = X304 — Aap3, N8 = 0304 — 0403, T8 = A304 — A403,
$9 = A3ps — A503, N9 = 0305 — 0503, T9 = A305 — A503,
$10 = Aap5 — A504, 110 = 0405 — 0504, T10 = A405 — A504,
subject to the following 10 equations:
D (D)) pr(y Oty = 0 (29)
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forl <i < j < k < 5,where the sum is over the permutations of three letters and weighted
by the sign of the permutation. These equations are precisely the ones which guarantee that
G (and hencer) is actually a simple fornG = 6g A 61 A 62, with

0o = ep + p1es + p2es + p3e7 + pPaes + pseo,
01 = e1 — 01e5 — O2e6 — 03€7 — 048 — 05¢€9,
6o = e + A1es + Aoeg + Aze7 + Ageg + Aseoq.

Finally, if us # 0 all that happens is that we find that the coefficients which vanish when
u3 = 0 are given in terms of those which do not by the following equations:

n15 = —u3r1, ¢15 = U301, T15 = U3P1,
N14 = U3A2,  ¢14 = —U302, T14= —U302,
n13 = —U3A3, P13 = (303, 713 = U303,
N2 = U3r4, P12 = —U304, T12 = —U3P4,
N11 = —U3r5, ¢11 = U305, T11 = U305,
and
Al = —H3N1, P15= —HU3TL, O15= U3P1,
Al4 = u3n2, P14 = —[3T2, 014 = —U3P2,
A3 = —u3N3, P13 = U3T3, 013 = U3P3,
M2 = uana,  p12= —[3T4, 012 = —U3fs,
M1= —pu3ns,  p11= U3Ts, 011 = U3Ps,
Al0 = u3ne, P10 = —H3Te, 010 = —U3P6,
A9 = —u3n7, P9 = U377, 09 = U3z,
Ag = —u3Ng, P8 = U3Ts, og = [L3¢8,
A7=pusng,  p7=—H3Ty, 07 = —u3dg,
A = —HU3N10, P& = U3T10, 06 = U3P10.

Thisimpliesthatr = F1+u3F», whereF; was shown above to be simple aFiglis given by

F7 = es6789— 110€01567 1 19€01568 — 118€01569 — 17€01578+ 116€01579— 15€01589
+ naeo1678 — 113€01679+ 12€01689 — 71€01789+ P10€02567 — P9€02568
+ P8e02569+ P7€02578 — P6e02579+ P5€02589— Pac02678+ P3€02679
— ¢2€02689+ $1€02789+ T10€12567 — T9€12568+ T8€12569+ 17€12578 — T6€12579
+ T5e12589 — T4€12678+ T3€12679— T2€12689+ T1€12789+ 05€05678 — £4€05679
+ p3e05689 — P2€05789+ 01€06789+ 05€15678 — 04€15679+ 03€15689 — 02€15789
+ 01€16789— Ase25678+ Aae25679— A3e25689+ A2€25789— A1€26789
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where the relation€8) hold and the independent parameters satisfy the saragudiions
(28). This then implies that

Fo =05 A6 A 67 ABg A Oy,

where
05 = e5 + p1ep + o01e1 — Azez, 06 = e + p2e0 + 02e1 — Azea,
07 = e7 + p3eo + o3e1 — Aze, 08 = eg + paep + 041 — Age,

09 = eg + psep + ose1 — Asez.

Finally, we notice that the simple fornfg and F> are orthogonal since so are the 1-forms
0; (definingfs = e3 andf4 = e4). This then concludes the verification of the conjecture
for this case.
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