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Abstract

We explore a Plücker-type relation which occurs naturally in the study of maximally supersym-
metric solutions of certain supergravity theories. This relation generalises at the same time the
classical Plücker relation and the Jacobi identity for a metric Lie algebra and coincides with the
Jacobi identity of a metricn-Lie algebra. In low dimension we present evidence for a geometric
characterisation of the relation in terms of middle-dimensional orthogonal planes in Euclidean or
Lorentzian inner product spaces.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction and main result

The purpose of this note is to present a conjectural Plücker-style formula for middle-
dimensional orthogonal planes in real vector spaces equipped with an inner product of Eu-
clidean or Lorentzian signatures. The formula is both a natural generalisation of the classical
Plücker formula and of the Jacobi identity for Lie algebras admitting an invariant scalar
product. The formula occurs naturally in the study of maximally supersymmetric solutions
of 10-dimensional type IIB supergravity and also in six-dimensional chiral supergravity.
We will state the conjecture and then prove it for special cases which have found appli-
cations in physics. To place it in its proper mathematical context we start by reviewing
the classical Plücker relations. For a recent discussion, see the paper[1] by Eastwood and
Michor.
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1.1. The classical Plücker relations

The classical Plücker relations describe the projective embedding of the Grassmannian
of planes. LetV be ad-dimensional vector space (overR or C, say) and letV∗ be the
dual. LetΛp

V
∗ denote the space ofp-forms onV andΛp

V the space ofp-polyvectors
on V. We shall say that ap-form F is simple(or decomposable) if it can be written as the
wedge product ofp 1-forms. Every (non-zero) simplep-form defines ap-planeΠ ⊂ V

∗,
by declaringΠ to be the span of thep 1-forms. Conversely, to such ap-planeΠ one can
associate a simplep-form by taking a basis and wedging the elements together. A different
choice of basis merely results in a non-zero multiple (the determinant of the change of
basis) of the simplep-form. This means that the space ofp-planes is naturally identified
with the subset of the projective space of thep-forms corresponding to the rays of simple
p-forms. The classical Plücker relations (see, e.g.,[1,2]) give the explicit embedding in
terms of the intersection of a number of quadrics inΛp

V
∗. Explicitly one has the following

theorem.

Theorem 1. A p-formF ∈ Λp
V

∗ is simple if and only if for every(p − 1)-polyvector
Ξ ∈ Λp−1

V,

ιΞF ∧ F = 0,

whereιΞF denotes the1-form obtained by contracting F withΞ.

Being homogeneous, these equations are well defined in the projective spacePΛp
V

∗ ∼=
P
(dp)−1, and hence define an algebraic embedding there of the Grassmannian Gr(p, d) of

p-planes ind dimensions.
The Plücker relations arise naturally in the study of maximally supersymmetric solutions

of 11-dimensional supergravity[3,4]. Indeed, the Plücker relations for the 4-formF4 in
11-dimensional supergravity arise from the zero curvature condition for the supercovariant
derivative. A similar analysis for 10-dimensional type IIB supergravity[4] yields new (at
least to us) Plücker-type relations, to which we now turn.

1.2. Orthogonal Plücker-type relations

Let V be a real vector space of finite dimension equipped with a Euclidean or Lorentzian
inner product〈−,−〉. Let F ∈ Λp

V
∗ be ap-form and letΞ ∈ Λp−2

V be a (p −
2)-polyvector. The contractionιΞF of F with Ξ is a 2-form onV and hence gives rise
to an element of the Lie algebraso(V). If ω ∈ Λ2

V
∗ ∼= so(V), we will denote its action on

a formΩ ∈ ΛV
∗ by [ω,Ω]. Explicitly, if ω = α ∧ β, for α, β ∈ V

∗, then

[α ∧ β,Ω] = α ∧ ιβ�Ω − β ∧ ια�Ω,

whereα� ∈ V is the dual vector toα defined using the inner product. We then extend linearly
to any 2-formω.

Let F1 andF2 be two simple forms inΛp
V

∗. For the purposes of this note we will say
thatF1 andF2 areorthogonal if the d-planesΠi ⊂ V that they define are orthogonal;
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that is,〈X1, X2〉 = 0 for all Xi ∈ Πi. Note that if the inner product inV is of Lorentzian
signature then orthogonality does not imply thatΠ1 ∩ Π2 = 0, as they could have a null
direction in common. If this is the case,Fi = α ∧ Θi, whereα is a null form andΘi are
orthogonal simple forms in a Euclidean space in two dimensions less. Far from being a
pathology, the case of null forms plays an important role in the results of Figueroa-O’Farrill
and Papadopoulos[4] and is responsible for the existence of a maximally supersymmetric
plane wave in IIB supergravity[5].

We now can state the following conjecture.

Conjecture 1.

(i) Let p ≥ 2 andF ∈ Λp
V

∗ be a p-form on a d-dimensional Euclidean or Lorentzian
inner product spaceV, whered = 2p or d = 2p + 1. For all (p − 2)-polyvectors
Ξ ∈ Λp−2

V, the equation

[ιΞF, F ] = 0 (1)

is satisfied if and only if F can be written as a sum of two orthogonal simple forms; that
is,

F = F1 + F2

whereF1 andF2 are simple andF1 ⊥ F2.
(ii) Letp ≥ 2 andF ∈ Λp

V
∗ be a p-form on the Euclidean or Lorentzian vector spaceV

with dimensionp ≤ d < 2p. Eq. (1)holds if and only if F is simple.

Again the equation is homogeneous, hence its zero locus is well defined in the projective

space ofPΛp
V

∗ ∼= P
(dp)−1.

Relative to a basis{ei} for V relative to which the inner product has matrixgij , we can
rewriteEq. (1)as

d∑
k,�=1

gk�Fki1i2···ip−2[j1Fj2j3···jp]� = 0,

which shows that the “if” part of the conjecture follows trivially: simply complete to a
pseudo-orthonormal basis forV the bases for the planesΠi, express this equation relative
to that basis and observe that every term vanishes.

Finally let us remark as a trivial check that both Eq.(1)and the conclusion of the conjecture
are invariant under the orthogonal group O(V). A knowledge of the orbit decomposition
of the space ofp-forms in V under O(V) might provide some further insight into this
problem.

To this date the first part of the conjecture has been verified for the following cases:

• p ≤ 2: both for Euclidean and Lorentzian signatures,
• d = 6,p = 3: both for Euclidean and Lorentzian signatures,
• d = 7,p = 3: for Euclidean signature,
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• d = 8,p = 4: for Euclidean signature, and
• d = 10,p =5: for Euclidean and Lorentzian signatures.

It is the latter case which is required in the investigation of maximally supersymmetric
solutions of 10-dimensional type IIB supergravity[4], whereas the second case enters in the
case of six-dimensional(1,0) supergravity[6]. The fourth is expected to have applications
in eight-dimensional supergravity theories.

The second part of the conjecture has been verified in the cases:

• p ≤ 2: both for Euclidean and Lorentzian signatures,
• d < 6,p = 3: both for Euclidean and Lorentzian signatures,
• d < 8,p = 4: for Euclidean signature.

There are two conditions in the hypothesis which seem artificial at first:

• the restriction on the signature of the inner product, and
• the restriction on the dimension of the vector space.

These conditions arise from explicit counterexamples for lowp, which we now discuss
together with a Lie algebraic re-interpretation of the identity(1).

Before we proceed to explain these, let us remark that it might just be the case that the
restriction on the dimension of the vector space is an artefact of lowp. We have no direct
evidence of this, except for the following. We depart from the observation that the ratio of
the number of relations to the number of components of ap-form in d dimensions is

(
d

p−2

)
.

For fixedp and larged, this ratio behaves asdp−2. So forp = 2, the ratio is 1 and for
p = 3 grows linearly asd. It is the latter case where the counterexamples that justify the
restriction on the dimensions will be found. Forp > 3 this ratio grows much faster and
it is perhaps not unreasonable to expect that the only solutions are those which verify the
conjecture.

1.3. The casep = 2

Let us observe that forp = 2 there are no equations, since [F,F ] = 0 trivially in
so(V). The conjecture would say that anyF ∈ so(V) can be “skew-diagonalised”. In
Euclidean signature this is true: it is the conjugacy theorem for Cartan subalgebras of
so(V) ∼= so(d). The result also holds in Lorentzian signature; although it is more com-
plicated, since depending on the type of element (elliptic, parabolic or hyperbolic) of
so(V) ∼= so(1, d − 1), it conjugates to one of a set of normal forms, all of which satisfy the
conjecture.

The conjecture does not hold in signature(2, d) for anyd ≥ 2, as a quick glance at the
normal forms of elements ofso(2, d) under O(2, d) shows that there are irreducible blocks
of dimension higher than 2. In other words, there are elementsω ∈ so(2, d) for which
there is no decomposition ofR2,d into 2-planes stabilised byω. A similar situation holds
in signature(p, q) for p, q > 2, as can be gleaned from the normal forms tabulated in[7].

This justifies restricting the signature of the scalar product onV in the hypothesis to the
conjecture. The restriction on the dimension ofV arises by studying the casep = 3, to
which we now turn.
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1.4. The casep = 3

Let F ∈ Λ3
V

∗. Using the scalar productF defines a linear map [−,−] : Λ2
V → V by

F(X, Y,Z) = 〈[X, Y ], Z〉, for all X, Y,Z ∈ V. (2)

The Plücker formula(1) in this case is nothing but the statement that for allX ∈ V, the map
Y �→ [X, Y ] should be a derivation over [−,−]:

[X, [Y,Z]] = [[X, Y ], Z] + [Y, [X,Z]] . (3)

In other words, it is the Jacobi identity for [−,−], turning V into a Lie algebra, as the
notation already suggests. More is true, however, and because of the fact thatF ∈ Λ3

V
∗,

the metric is invariant:

〈[X, Y ], Z〉 = 〈X, [Y,Z]〉.

In other words, solutions of(1) for p = 3 are in one-to-one correspondence with Lie
algebras admitting an invariant non-degenerate scalar product.

We will show below (in two different ways) that the conjecture works ford ≤ 7, but the
simple Lie algebrasu(3) with the Killing form provides a counterexample to the conjecture
for d = 8 (and also for anyd > 8 by adding to it an Abelian factor). To see this, suppose
that the 3-formF associated tosu(3) decomposed into a sum1 F = F1 +F2 of orthogonal
simple forms. EachFi defines a three-plane insu(3). LetZ ∈ su(3) be orthogonal to both
of these planes: suchZ exists because dimsu(3) = 8. ThenιZF = 0, and this would mean
that for allX, Y ,F(Z,X, Y) = 〈[Z,X], Y〉 = 0, so thatZ is central, which is a contradiction
becausesu(3) is simple.

1.5. Metricn-Lie algebras

There is another interpretation of the Plücker relation(1) in terms of a generalisation of
the notion of Lie algebra.2

Let p = n + 1 andF ∈ Λn+1
V

∗ and as we did forp = 3 let us define a map [· · · ] :
Λn

V → V by

F(X1, X2, . . . , Xn+1) = 〈[X1, . . . , Xn], Xn+1〉. (4)

The relation(1) now says that for allX1, . . . , Xn−1 ∈ V, the endomorphism ofV defined
by Y �→ [X1, . . . , Xn−1, Y ] is a derivation over [· · · ]; that is,

[X1, . . . , Xn−1, [Y1, . . . , Yn]] =
n∑

i=1

[Y1, . . . , [X1, . . . , Xn−1, Yi], . . . , Yn]. (5)

1 For generalp andd, there is no reason whyF should break up asF = F1 +F2; in the general case we would
haveF = F1 + F2 + · · · , where theFi are simple and mutually orthogonal.

2 We are grateful to Dmitriy Rumynin for making us aware of the existence of this concept.
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Eq. (5) turns V into ann-Lie algebra, a notion introduced in[8] and studied since by
many authors.3 (Notice that, perhaps unfortunately, in this notation, a Lie algebra is a 2-Lie
algebra.) More is true, however, and again the fact thatF ∈ Λn+1

V
∗ means that

〈[X1, . . . , Xn−1, Xn], Xn+1〉 = −〈[X1, . . . , Xn−1, Xn+1], Xn〉, (6)

which we tentatively call ann-Lie algebra with an invariant metric, or ametric n-Lie algebra
for short.

To see thatEqs. (1) and (5)are the same, let us first rewriteEq. (1)as follows:∑
a

ιXF
a ∧ Fa = 0,

whereX stands for a (n− 1)-vectorX1 ∧ · · · ∧Xn−1, and whereFa = ιeaF andFa = ιeaF

with ea = gab eb. Contracting the above equation withn + 1 vectorsY1, . . . , Yn+1, we
obtain∑

a

(ιXF
a ∧ Fa)(Y1, Y2, . . . , Yn+1) = 0,

which can be rewritten as

n+1∑
i=1

(−1)i−1〈[X1, . . . , Xn−1, Yi], [Y1, . . . , Ŷi, . . . , Yn+1]〉 = 0,

where a hat over a symbol denotes its omission. This equation is equivalent to

〈[X1, . . . , Xn−1, Yn+1], [Y1, . . . , Yn]〉

=
n∑

i=1

(−1)n−i〈[X1, . . . , Xn−1, Yi], [Y1, . . . , Ŷi, . . . , Yn+1]〉.

Finally we use the invariance property(6) of the metric to arrive at

〈[X1, . . . , Xn−1, [Y1, . . . , Yn]] , Yn+1〉

=
n∑

i=1

〈[Y1, . . . , [X1, . . . , Xn−1, Yi], . . . , Yn], Yn+1〉,

which, since this is true in particular for allYn+1, agrees with(4).
There seems to be some structure theory forn-Lie algebras but to our knowledge so

far nothing on metricn-Lie algebras. Developing this theory further one could perhaps
gain further insight into this conjecture. We are not aware of a notion ofn-Lie group, but
if it did exist then both Ad S5 × S5 and the IIB Hpp-wave would be examples of 4-Lie
groups!

3 This structure is sometimes also called aFilippov algebra.
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2. Verifications in low dimension

To verify the conjecture in the cases mentioned above, we shall use some group theory
and the fact that any 2-form can be skew-diagonalised by an orthogonal transformation, to
write down an ansatz for thep-form which we then proceed to analyse systematically. Some
of the calculations leading to the verification of the conjecture have been done or checked
with Mathematicaand are contained in notebooks which are available upon request. Since
the inner product allows us to identifyV and its dualV∗, we will ignore the distinction in
what follows.

2.1. Proof forF ∈ Λ3
E

6

LetF ∈ Λ3
E

6 be a 3-form in six-dimensional Euclidean space. There is an orthonormal
basis{e1, e2, . . . , e6} for which the 2-formι1F obtained by contractinge1 intoF takes the
form

ι1F = αe23 + βe45,

whereeij = ei ∧ ej and similarly foreij ···k in what follows.
We must distinguish several cases depending on whetherα andβ are generic or not. In

the general case,ι1F is a generic element of a Cartan subalgebra ofso(4) acting onE
4 =

R〈e2, e3, e4, e5〉. The non-generic cases are in one-to-one correspondence with conjugacy
classes of subalgebras ofso(4) of strictly lower rank. In summary we have the following
cases to consider:

(1) so(4): α andβ generic,
(2) su(2): α = ±β �= 0, and
(3) so(2): β = 0,α �= 0.

We now treat each case in turn.

2.1.1. so(4)
In the first case,α andβ are generic, whence the equation [ι1F,F ] = 0 says that only

terms invariant under the maximal torus generated byι1F survive, whence

F = αe123 + βe145 + γe236 + δe456.

The remaining equations [ιiF, F ] = 0 are satisfied if and only if

αβ + γδ = 0. (7)

Therefore we see that indeed

F = (αe1 + γe6) ∧ e23 + (βe1 + δe6) ∧ e45

can be written as the sum of two simple forms which moreover are orthogonal, sinceEq. (7)
implies that

(αe1 + γe6) ⊥ (βe1 + δe6).
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2.1.2. su(2)
Suppose thatα = β (the caseα = −β is similar), so that

ι1F = α(e23 + e45).

This means thatι1F belongs to the Cartan subalgebra of the self-dual SU(2) in SO(4). The
condition [ι1F,F ] = 0 implies that only terms which have zero weights with respect to this
self-dualsu(2) survive, whence

F = α(e123 + e145) + e6 ∧ (η(e23 + e45) + γ(e23 − e45)

+ δ(e34 − e25) + ε(e24 + e35)).

However we are allowed to rotate the basis by the normaliser of this Cartan subalgebra,
which is U(1) × SU(2), where the U(1) is the circle generated byι1F and the SU(2) is
anti-self-dual. Conjugating by the anti-self-dual SU(2) means that we can putδ = ε = 0,
say. The remaining equations [ιXF, F ] = 0 are satisfied if and only if

α2 + η2 = γ2. (8)

This means that

F = (αe1 + (η + γ)e6) ∧ e23 + (αe1 + (η − γ)e6) ∧ e45,

whenceF can indeed be written as a sum of two simple 3-form which moreover are or-
thogonal sinceEq. (8)implies that

(αe1 + (η + γ)e6) ⊥ (αe1 + (η − γ)e6),

as desired.

2.1.3. so(2)
Finally let us consider the case where

ι1F = αe23.

The surviving terms inF after applying [ι1F,F ] = 0, are

F = αe123 + ηe234 + γe235 + δe236 + εe456.

But we can rotate in the (456) plane to makeγ = δ = 0, whence

F = (αe1 + ηe4) ∧ e23 + εe4 ∧ e56

can be written as a sum of two simple forms. Finally the remaining equations [ιXF, F ] = 0
simply say that

ηε = 0, (9)

whence the simple forms are orthogonal, since

(αe1 + ηe4) ⊥ εe4.

This verifies the conjecture ford = 3 and Euclidean signature.
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2.2. Proof forF ∈ Λ3
E

1,5

The Lorentzian case is almost identical to the Euclidean case, with a few signs in the
equations distinguishing them. LetF ∈ Λ3

E
1,5 be a 3-form in six-dimensional Minkowski

space–time with pseudo-orthonormal basis{e0, e2, . . . , e6} with e0 time-like. Rotating if
necessary in the five-dimensional Euclidean space spanned by{e2, e3, . . . , e6}, we can
guarantee that

ι0F = αe23 + βe45,

as for the Euclidean case. As in that case, we must distinguish between three cases:

(1) so(4): α andβ generic,
(2) su(2): α = ±β �= 0, and
(3) so(2): β = 0,α �= 0,

which we now briefly treat in turn.
In the first case, [ι0F,F ] = 0 means that the only terms inF which survive are

F = αe023 + βe045 + γe236 + δe456,

which is already a sum of two simple forms

F = (αe0 + γe6) ∧ e23 + (βe0 + δe6) ∧ e45.

The remaining equations [ιXF, F ] = 0 are satisfied if and only if

αβ = γδ, (10)

which makesαe0 + γe6 andβe0 + δe6 orthogonal, verifying the conjecture in this case.
We remark that this includes the null case as stated in[4] which corresponds to setting
α = β = γ = δ.

In the second case, letι0F = α(e23 + e45), with the other possibilityα = −β being
similar. The equation [ι0F,F ] = 0 results in the following:

F = α(e023 + e045) + e6 ∧ (η(e23 + e45) + γ(e23 − e45)

+ δ(e24 + e35) + ε(e25 + e34)).

We can rotate by the anti-self-dual SU(2) ⊂ SO(4) in such a way thatδ = ε = 0, whence
F take the desired form

F = (αe0 + (η + γ)e6) ∧ e23 + (αe0 + (η − γ)e6) ∧ e45.

The remaining equations [ιXF, F ] = 0 are satisfied if and only if

α2 + γ2 = η2, (11)

which makesαe0 + (η + γ)e6 andαe0 + (η − γ)e6 orthogonal, verifying the conjecture in
this case.
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Finally let ι0F = αe23. The equation [ι0F,F ] = 0 implies that

F = αe023 + ηe234 + γe235 + δe236 + εe456.

Rotating in the (456) plane we can makeγ = δ = 0, whenceF takes the desired form

F = (αe0 + ηe4) ∧ e23 + εe4 ∧ e56.

The remaining equations [ιXF, F ] = 0 are satisfied if and only if

ηε = 0, (12)

makingαe0 + ηe4 andεe4 orthogonal, and verifying the conjecture in this case, and hence
in general ford = 3 and Lorentzian signature.

2.3. Proof forF ∈ Λ3
E

7

Let F ∈ Λ3
E

7 be a 3-form in a seven-dimensional Euclidean space with orthonormal
basis{ei}i=1,...,7, relative to which the 2-formι7F obtained by contractinge7 into F takes
the form

ι7F = αe12 + βe34 + γe56,

whereeij = ei ∧ ej and similarly foreij ···k in what follows.
We must distinguish several cases depending on whetherα, β andγ are generic or not.

In the general case,ι7F is a generic element of a Cartan subalgebra ofso(6) acting on
the Euclidean spaceE6 spanned by{ei}i=1,...,6. The non-generic cases are in one-to-one
correspondence with conjugacy classes of subalgebras ofso(6) of strictly lower rank. In
summary we have the following cases to consider:

(1) so(6): α, β andγ generic;
(2) su(2) × u(1): α = ±β andγ generic;
(3) u(1) diagonal:α = β = γ;
(4) su(3): α + β + γ = 0;
(5) so(4): α, β generic andγ = 0;
(6) su(2): α = ±β andγ = 0; and
(7) so(2): γ = β = 0,α �= 0.

We now treat each case in turn.

2.3.1. so(6)
In the first case,α, β andγ are generic, whence the equation [ι7F,F ] = 0 says that only

terms invariant under the maximal torus generated byι7F survive, whence

F = αe127 + βe347 + γe567.

The remaining equations [ιiF, F ] = 0 are satisfied if and only if two ofα, β andγ vanish,
violating the hypothesis.
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2.3.2. su(2) × u(1)
We chooseβ = γ andα generic. The caseβ = −γ is similar. The equation [ι7F,F ] = 0

says that only terms invariant under the maximal torus generated byι7F survive. Thus

F = αe127 + β(e347 + e567) + e7 ∧ (δ(e34 − e56) + ε(e36 − e45) + η(e25 + e46)).

Using an anti-self-dual rotation, we can setε = η = 0. If δ �= 0, thenβ + δ �= β − δ

and this leads to the case investigated in the previous section. Ifδ = 0, invariance under
[ι1F,F ] = 0 implies that eitherα or β vanishes, which violates the hypothesis.

2.3.3. u(1) diagonal
Suppose thatα = β = γ. The equation [ι7F,F ] = 0 implies that

F = α(e127 + e347 + e567).

In addition invariance under [ι1F,F ] = 0 implies thatα = 0 which violates the hypothesis.

2.3.4. su(3)
Suppose thatα + β + γ = 0. The condition [ι7F,F ] = 0 implies that

F = (αe127 + βe347 + γe567) + δΩ1 + εΩ2,

whereΩ1 and the real and imaginary parts of thesu(3)-invariant(3,0)-form with respect
to a complex structureJ = e12 + e34 + e56, that is,

Ω1 = e135 − e146 − e236 − e245, Ω2 = e136 + e145 + e235 − e246. (13)

The presence of these forms can be seen from the decomposition ofΛ3
E

6 representation
undersu(3). Undersu(3), the representationE6 transforms as the underlying real repre-
sentation of3 ⊕ 3̄ (or [[3]] in Salamon’s notation[9]). Similarly the representationΛ3

E
6

decomposes into

Λ3
E

6 = [[1]] ⊕ [[6]] ⊕ [[3]] .

The invariant forms are associated with the trivial representations in the decomposition. We
still have the freedom to rotate by the normaliser in SO(6) of the maximal torus of SU(3).
An obvious choice is the diagonal U(1) subgroup of U(3) which leaves invariantJ . This
U(1) rotatesΩ1 andΩ2 and we can use it to setε = 0. The new case is whenδ �= 0. In such
case invariance under the rest of the rotationιiF implies thatαβ+ 2δ2 = 0 and cyclic inα,
β andγ. These relations contradict the hypothesis thatα+β+γ = 0 but otherwise generic.

2.3.5. so(4)
Suppose thatα andβ are generic andγ = 0. In that case, [ι7F,F ] = 0 implies that

F = αe127 + βe347 + δ1e125 + δ2e126 + ε1e345 + ε2e346.

Using a rotation in the (56) plane, we can setδ2 = 0. In additionδ1 can also be set to zero
with a rotation in the (57) plane and appropriate redefinition of theα, β andε1 components.
Thus the 3-form can be written as

F = αe127 + βe347 + ε1e345 + ε2e346.
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A rotation in the (56) plane leads toε2 = 0. The rest of the conditions [ιiF, F ] = 0 imply
thatαβ = 0 which proves the conjecture.

2.3.6. su(2)
Suppose thatα = β andγ = 0. The caseα = −β can be treated similarly. The condition

[ι7F,F ] = 0 implies that

F = α(e127 + e347) + δ(e125 + e345) + ε(e126 + e346) + η1(e125 − e345)

+ η2(e145 − e235) + η3(e135 + e245) + θ1(e126 − e346) + θ2(e146 − e236)

+ θ3(e136 + e246).

With an anti-self-dual rotation, we can setη2 = η3 = 0. There are two cases to consider.
If η1 �= 0, the condition [ι5F,F ] = 0 implies thatθ2 = θ3 = 0. In such caseF can be
rewritten as:

F = (αe7 + (δ + η1)e5 + (ε + θ1)e6) ∧ e12 + (αe7 + (δ − η1)e5 + (ε − θ1)e6) ∧ e34.

The rest of the conditions imply that

α2 + δ2 − η2
1 + ε2 − θ2

1 = 0

and soF is the sum of two orthogonal simple forms.
Now if η1 = 0, an anti-self-dual rotation will giveθ2 = θ3 = 0. This case is a special

case of the previous one for whichη1 = 0. The conjecture is confirmed.

2.3.7. so(2)
Suppose thatα �= 0 andβ = γ = 0. The condition [ι7F,F ] = 0 implies that

F = αe127 + σ1e123 + σ2e124 + σ3e125 + σ4e126 + τ1e345 + τ2e346 + τ3e456.

A rotation in the (3456) plane can lead toσ2 = σ3 = σ4 = 0. If σ1 �= 0, then the condition
[ι1F,F ] = 0 implies thatτ2 = τ1 = 0 in which case

F = αe127 + σ1e123 + τ3e456.

A further rotation in the (37) plane leads to the desired result.
Now if σ1 = 0, a rotation in the (3456) plane can lead toτ2 = τ3 = 0 in which case

F = αe127 + τ1e345.

This again gives the desired result.

2.4. Proof forF ∈ Λ3
E
d andF ∈ Λ3

E
1,d−1, d < 6

We shall focus on the proof of the conjecture forF ∈ Λ3
E
d . The proof of the statement

in the Lorentzian case is similar. LetF ∈ Λ3
E

5 be a 3-form in five-dimensional Euclidean
space. There is an orthonormal basis{e1, e2, . . . , e5} for which ι1F takes the form

ι1F = αe23 + βe45.
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As previous cases, there are several possibilities to consider depending on whetherα andβ
are generic or not. Using the adopted group theoretic characterisation, we have the following
cases:

(1) so(4): α andβ generic,
(2) su(2): α = ±β �= 0, and
(3) so(2): β = 0,α �= 0.

We now treat each case in turn.

2.4.1. so(4)
In the first case,α andβ are generic, whence the equation [ι1F,F ] = 0 says that only

terms invariant under the maximal torus generated byι1F survive, whence

F = αe123 + βe145

The remaining equations [ιiF, F ] = 0 are satisfied if and only if

αβ = 0, (14)

which is a contradiction. Thusι1F cannot be generic.

2.4.2. su(2)
Suppose thatα = β (the caseα = −β is similar), so that

ι1F = α(e23 + e45).

This means thatι1F belongs to the Cartan subalgebra of the self-dual SU(2) in SO(4). The
condition [ι1F,F ] = 0 implies that only terms which have zero weights with respect to this
self-dualsu(2) survive, and so

F = α(e123 + e145).

The remaining equations [ιXF, F ] = 0 are satisfied if and only if

α2 = 0, (15)

which is a contradiction. Thusι1F cannot be self-dual.

2.4.3. so(2)
Finally let us consider the case where

ι1F = αe23.

The surviving terms inF after applying [ι1F,F ] = 0, are

F = αe123 + ηe234 + γe235.

But we can rotate in the (45) plane to makeγ = 0, whence

F = (αe1 + ηe4) ∧ e23

is a simple form. This verifies the conjecture ford = 5 and Euclidean signature.
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2.4.4. Proof forF ∈ Λ3
E
d andF ∈ Λ3

E
1,d−1, d = 3,4

The proof ford = 3 is obvious. It remains to show the conjecture ford = 4. In Euclidean
signature, we have

ι1F = αe23.

The surviving terms inF after applying [ι1F,F ] = 0, are

F = αe123 + ηe234.

which can be rewritten as

F = (αe1 + ηe4) ∧ e23

and so it is a simple form. This verifies the conjecture ford = 4 and Euclidean signature.
The proof for Lorentzian spaces is similar.

2.5. Metric Lie algebras and the casep = 3

We can give an alternate proof for the casep = 3 exploiting the relationship with metric
Lie algebras; that is, Lie algebras admitting an invariant non-degenerate scalar product.

It is well known that reductive Lie algebras—that is, direct products of semisimple and
Abelian Lie algebras—admit invariant scalar products: Cartan’s criterion allows us to use
the Killing form on the semisimple factor and any scalar product on an Abelian Lie algebra
is automatically invariant.

Another well-known example of Lie algebras admitting an invariant scalar product are
the classical doubles. Leth beanyLie algebra and leth∗ denote the dual space on whichh
acts via the coadjoint representation. The definition of the coadjoint representation is such
that the dual pairingh⊗ h∗ → R is an invariant scalar product on the semidirect product
h� h∗ with h∗ an Abelian ideal. The Lie algebrah� h∗ is called the classical double ofh
and the invariant metric has split signature(r, r) where dimh = r.

It turns out that all Lie algebras admitting an invariant scalar product can be obtained
by a mixture of these constructions. Letg be a Lie algebra with an invariant scalar product
〈−,−〉g, and leth act ong preserving both the Lie bracket and the scalar product; in other
words,h acts ong via skew-symmetric derivations. First of all, sinceh acts ong preserving
the scalar product, we have a linear map

h→ so(g) ∼= Λ2g

with dual map

c : Λ2g∗ ∼= Λ2g→ h∗,

where we have used the invariant scalar product to identityg andg∗ equivariantly. Sinceh
preserves the Lie bracket ing, this map is a cocycle, whence it defines a class [c] ∈ H2(g; h∗)
in the second Lie algebra cohomology ofg with coefficients in the trivial moduleh∗. Let
g×c h

∗ denote the corresponding central extension. The Lie bracket of theg×c h
∗ is such

thath∗ is central and ifX, Y ∈ g, then

[X, Y ] = [X, Y ]g + c(X, Y),
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where [−,−]g is the Lie bracket ofg. Now h acts naturally on this central extension: the
action onh∗ given by the coadjoint representation. This then allows us to define thedouble
extensionof g by h,

d(g, h) = h� (g×c h
∗)

as a semidirect product. Details of this construction can be found in[10,11]. The remarkable
fact is thatd(g, h) admits an invariant inner product:

(16)

whereB is any invariant symmetric bilinear form onh and id stands for the dual pairing
betweenh andh∗.

We say that a Lie algebra with an invariant scalar product is indecomposable if it cannot
be written as the direct product of two orthogonal ideals. A theorem of Medina and Revoy
[10] (see also[12] for a refinement) says that an indecomposable (finite-dimensional) Lie
algebra with an invariant scalar product is one of the following:

(1) one-dimensional,
(2) simple, or
(3) a double extensiond(g, h), whereh is either simple or one-dimensional andg is a Lie

algebra with an invariant scalar product. (Notice that we can takeg to be the trivial
zero-dimensional Lie algebra. In this way we recover the classical double.)

Any (finite-dimensional) Lie algebra with an invariant scalar product is then a direct sum
of indecomposables.

Notice that if the scalar product ong has signature(p, q) and if dimh = r, then the
scalar product ond(g, h) has signature(p+ r, q+ r). Therefore Euclidean Lie algebras are
necessarily reductive, and if indecomposable they are either one-dimensional or simple. Up
to dimension 7 we have the following Euclidean Lie algebras:

• R
d with d ≤ 7,

• su(2) ⊕ R
k with k ≤ 4, and

• su(2) ⊕ su(2) ⊕ R
k with k = 0,1.

The conjecture clearly holds for all of them.
The Lorentzian case is more involved. Indecomposable Lorentzian Lie algebras are ei-

ther reductive or double extensionsd(g, h), whereg has a positive-definite invariant scalar
product andh is one-dimensional. In the reductive case, indecomposability means that it
has to be simple, whereas in the latter case, since the scalar product ong is positive-definite,
g must be reductive. A result of Figueroa-O’Farrill and Stanciu[11] (see also[12]) then
says that any semisimple factor ing splits off resulting in a decomposable Lie algebra. Thus
if the double extension is to be indecomposable, theng must be Abelian. In summary, an
indecomposable Lorentzian Lie algebra is either simple or a double extension of an Abelian
Lie algebra by a one-dimensional Lie algebra and hence solvable (see, e.g.,[10]).
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These considerations make possible the following enumeration of Lorentzian Lie algebras
up to dimension 7:

(1) E
1,d−1 with d ≤ 7,

(2) E
1,k ⊕ so(3) with k ≤ 3,

(3) E
k ⊕ so(1,2) with k ≤ 4,

(4) so(1,2) ⊕ so(3) ⊕ E
k with k = 0,1, or

(5) d(E4,R) ⊕ E
k with k = 0,1,

where the last case actually corresponds to a family of Lie algebras, depending on the action
of R on E

4. The conjecture holds manifestly for all cases except possibly the last, which
we must investigate in more detail.

Let ei, i = 1,2,3,4, be an orthonormal basis forE
4, and lete− ∈ R ande+ ∈ R

∗, so
that together they spand(E4,R). The action ofR on R

4 defines a mapρ : R → Λ2
R

4,
which can be brought to the formρ(e−) = αe1 ∧ e2 + βe3 ∧ e4 via an orthogonal change
of basis inE

4 which moreover preserves the orientation. The Lie brackets ofd(E4,R) are
given by

[e−, e1] = αe2, [e−, e2] = −αe1,

[e1, e2] = αe+, [e−, e3] = βe4,

[e−, e4] = −βe3, [e3, e4] = βe+,

and the scalar product is given (up to scale) by

〈e−, e−〉 = b, 〈e+, e−〉 = 1, 〈ei, ej〉 = δij .

The first thing we notice is that we can setb = 0 without loss of generality by the auto-
morphism fixing allei, e+ and mappinge− �→ e− − (1/2)be+. We will assume that this
has been done and that〈e−, e−〉 = 0. A straightforward calculation shows that the 3-form
F takes the form

F = αe− ∧ e1 ∧ e2 + βe− ∧ e3 ∧ e4,

whence the conjecture holds.

2.6. Proof forF ∈ Λ4
E

8

In the absence (to our knowledge) of a structure theorem for metricn-Lie algebras, we
will present the verification of the conjecture in the remaining cases using the “brute-force”
approach explained earlier.

Choose an orthonormal basis{e1, e2, . . . , e8} for which ι12F = αe34 + βe56 + γe78,
whereι12 means the contraction ofF by e12.

Suppose thatα, β andγ are generic. In this case, the equation [ι12F,F ] = 0 says that
the only terms inF which survive are those which are invariant under the maximal torus
of SO(6), the group of rotations in the six-dimensional space spanned by{e3, e4, . . . , e8};
that is,

F = αe1234+ βe1256+ γe1278+ δe3456+ εe3478+ ηe5678.
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Now, ι13F = −αe24, whence the equation [ι13F,F ] = 0 implies thatβ = γ = δ = ε = 0,
violating the condition thatι12F be generic.

In fact, this argument clearly works ford ≥ 4 so that ford ≥ 4 we have to deal
with non-generic rotations. Non-generic rotations correspond to (conjugacy classes of)
subalgebras ofso(6) with rank strictly less than that ofso(6):

(1) su(3): α + β + γ = 0 but allα, β, andγ non-zero;
(2) su(2) × u(1): α = β �= γ, but again all non-zero;
(3) u(1) diagonal:α = β = γ �= 0;
(4) so(4): γ = 0 andα �= β non-zero;
(5) su(2): γ = 0 andα = β �= 0; and
(6) so(2): β = γ = 0 andα �= 0.

We now go down this list case by case.

2.6.1. su(3)
Whenι12F is a generic element of the Cartan subalgebra of ansu(3) subalgebra ofso(6)

the only terms inF which satisfy the equation [ι12F,F ] = 0 are those which have zero
weights relative to this Cartan subalgebra. LetE

6 = 〈e1, e2〉⊥. ThenF can be written as

F = e12 ∧ ι12F + G,

whereG is in the kernel ofι12, namely

G = e1 ∧ G1 + e2 ∧ G2 + G3,

whereG1,G2 ∈ Λ3
E

6 andG3 ∈ Λ4
E

6. We have investigated the decomposition ofΛ3
E

6

undersu(3) in the previous section. The representationΛ4
E

6 decomposes into

Λ4
E

6 = 1 ⊕ 8 ⊕ [[3]] ,

whence it is clear where the zero weights are: they are one in the trivial representation1
and two in the adjoint8. This means that in this case together with the zero weights of the
Λ3

E
6 representations a total of seven terms inG:

G1 = λ1Ω1 + λ2Ω2, G2 = λ3Ω1 + λ4Ω2, G3 = µ1e3456+ µ2e3478+ µ3e5678,

where

Ω1 = e357 − e368 − e458 − e467, Ω2 = e358 + e367 + e457 − e468 (17)

are the real and imaginary parts, respectively, of the holomorphic 3-form inE
6 thought of as

C
3 with thesu(3)-invariant complex structureJ = e34+e56+e78. We still have to freedom

to rotate by the normaliser in SO(6) of the maximal torus in SU(3) thatι12F determines. An
obvious choice is the U(1) generated by the complex structure. This is not in SU(3) but in
U(3) and has the virtue of acting onΩ = Ω1 + iΩ2 by multiplication by a complex phase.
This means that we can always chooseΩ to be real, thus settingλ4 = 0, say. Analysing the
remaining equations [ιijF,F ] = 0 we see thatα andβ are constrained toα = ±β, violating
the hypothesis that they are generic.
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2.6.2. su(2) × u(1)
Let us considerα = β, the other case being similar, in fact related by conjugation in O(4),

which is an outer automorphism. The equation [ι12F,F ] = 0 says that the only terms inF
which survive are those corresponding to zero weights of thesu(2) × u(1) subalgebra of
so(6). It is easy to see thatΛ3

E
6 has non-zero weights, whereas the zero weights inΛ4

E
6

are the Hodge duals of the following 2-forms:

e34, e56, e78, e35 + e46, e36 − e45.

Conjugating by the anti-self-dual SU(2) we can set to zero the coefficients of the last two
forms, leaving

F = α(e1234+ e1256) + γe1278+ µ1e3456+ µ2e3478+ µ3e5678

as the most general solution of [ι12F,F ] = 0. Now the equation [ι13F,F ] = 0, for example,
implies thatα must vanish, violating the hypothesis. This case is therefore discarded.

2.6.3. u(1) diagonal
In this case,ι12F = α(e34+e56+e78) belongs to the diagonalu(1)which is the centre of

u(3) ⊂ so(6), whereso(6) acts on theE6 spanned by{ei}3≤i≤8. There are no zero weights
in Λ3

E
6, but there are nine inΛ4

E
6: the Hodge duals ofu(3) ⊂ so(6) ∼= Λ2

E
6. However

we are allowed to conjugate by the normaliser ofu(1) in so(6) which isu(3). This allows
us to conjugate the invariant 2-forms to lie in the Cartan subalgebra ofu(3). In summary,
the solution to [ι12F,F ] = 0 can be written in the form

F = α(e1234+ e1256+ e1278) + µ1e3456+ µ2e3478+ µ3e5678.

Now we consider, for example, the equation [ι13F,F ] = 0 and we see thatα must vanish,
violating the hypothesis. Thus this case is also discarded.

Notice that all the cases where the 2-formι12F has maximal rank have been discarded,
often after a detailed analysis of the equations. This should have a simpler explanation.

2.6.4. so(4)
In this caseι12F = αe34 + βe56, whereα andβ are generic. This means that the most

general solution of [ι12F,F ] = 0 is given by

F = αe1234+ βe1256+ G,

whereG is of the forme1 ∧G1 + e2 ∧G2 +G3, whereG1,G2 ∈ Λ3
E

6 andG3 = Λ4
E

6,
whereE

6 is spanned by{ei}3≤i≤8, and where theGi have zero weight with respect to
this so(4) algebra. A little group theory shows thatG1 andG2 are linear combinations of
the four monomialse347, e348, e567, e568; whereasG3 is a linear combination of the three
monomialse3456, e3478, e5678. We still have the freedom to conjugate by the normaliser in
SO(6) of the maximal torus generated byι12F , which includes the SO(2) of rotations in the
(78) plane. Doing this we can set any one of the monomials ine1 ∧ G1, saye1347, to zero.
In summary, the most general solution of [ι12F,F ] = 0 can be put in the following form:

F = αe1234+ βe1256+ µ1e3456+ µ2e3478+ µ3e5678+ λ1e1348+ λ2e1567

+ λ3e1568+ λ4e2347+ λ5e2348+ λ6e2567+ λ7e2568.
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Analysing the remaining equations [ιijF,F ] = 0 we notice that genericity ofα andβ are
violated unlessµ1 = 0 andµ3µ2 = αβ. Given this we find that the most general solution is

F = αe1234+ βe1256+ µ3e5678+ µ2e3478+ ν1(αe1348+ µ3e2567)

+ ν2(βe1567− µ2e2348) + ν3(βe1568+ µ2e2347)

subject to

ν1ν3 = −1 and µ3µ2 = αβ. (18)

These identities are precisely the ones that allow us to rewriteF as a sum of two simple forms

F1 = (αe1 − µ2(ν3e7 − ν2e8)) ∧ (e2 + ν1e8) ∧ e3 ∧ e4,

F2 = (βe1 − µ3ν1e7) ∧ (e2 + ν2e7 + ν3e8) ∧ e5 ∧ e6,

which moreover are orthogonal.

2.6.5. su(2)
In this caseι12F = α(e34+ e56), where without loss of generality we can setα = 1. This

means that the most general solution of [ι12F,F ] = 0 is given by

F = e1234+ e1256+ e1 ∧ G1 + e2 ∧ G2 + G3,

whereG1,G2 ∈ Λ3
E

6 andG3 = Λ4
E

6, whereE
6 is spanned by{ei}3≤i≤8, and where the

Gi have zero weight with respect to thissu(2) algebra. A little group theory shows thatG1
andG2 are linear combinations of the following eight 3-forms:

e34i + e56i, e34i − e56i, e35i + e46i, e36i − e45i,

wherei can be either 7 or 8; whereasG3 is the Hodge dual (inE6) of a linear combination
of

e34 + e56, e34 − e56, e35 + e46, e36 − e45.

Using the freedom to conjugate by the normaliser ofsu(2) in so(6) we can choose basis
such thatG3 takes the form

G3 = µ1e3456+ µ2e3478+ µ3e5678.

This means thatF takes the following form:

F = e1234+ e1256+ µ1e3456+ µ2e3478+ µ3e5678+ λ1e1347+ λ2e1348+ λ3e1567

+ λ4e1568+ λ5e2347+ λ6e2348+ λ7e2567+ λ8e2568+ σ1(e1357+ e1467)

+ σ2(e1367− e1457) + σ3(e1358+ e1468) + σ4(e1368− e1458)

+ σ5(e2357+ e2467) + σ6(e2367− e2457) + σ7(e2358+ e2468)

+ σ8(e2368− e2458).

This still leaves the possibility of rotating, for example, in the (78) plane and an anti-self-dual
rotation in the (3456) plane. Rotating in the (78) plane allows us to setλ8 = 0, whereas
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an anti-self-dual rotation allows us to setσ8 = 0. Imposing, for example, the equation
[ι25F,F ] = 0 tells us thatλ1 = 0, whereas the rest of the equations also say thatσ2 = 0.
It follows after a little work that ifµ1 �= 0 we arrive at a contradiction, so that we take
µ1 = 0.

We now have to distinguish between two cases, depending on whether or notµ2 equals
µ3. If µ2 �= µ3, then allσi = 0, and moreoverF takes the form

F = e1234+ e1256+ µ2e3478+ µ3e5678+ λ2(e1348+ µ3e2567)

+ λ3(e1567− µ2e2348) + λ4(e1568+ µ2e2347),

subject to the equations

λ2λ4 = −1 and µ2µ3 = 1. (19)

These equations are precisely what is needed to writeF as a sum of two orthogonal simple
formsF = F1 + F2, where

F1 = (e1 − µ2(λ4e7 − λ3e8)) ∧ (e2 + λ2e8) ∧ e3 ∧ e4F2

= (e1 − µ3λ2e7) ∧ (e2 + λ3e7 + λ4e8) ∧ e5 ∧ e6.

Finally, we consider the caseµ2 = µ3, which is inconsistent unlessµ2
2 = 1. Then the most

general solution takes the form

F = e1234+ e1256+ µ2(e3478+ e5678) + λ2(e1348+ µ2e2567)

+ λ3(e1567− µ2e2348) + λ4(e1568+ µ2e2347)

+ σ1(e1357+ e1467+ µ2e2358+ µ2e2468)

+ σ3(e1358+ e1468− µ2e2357− µ2e2467)

+ σ4(e1368− e1458− µ2e2367+ µ2e2457),

subject to the following equations:

λ3σ4 = 0 = σ1σ4, (λ2 − λ4)σ1 + λ3σ3 = 0, σ2
1 + σ2

3 + σ2
4 = 1 + λ2λ4.

(20)

Let us rewriteF in terms of (anti)self-dual 2-forms in the (1278) and (3456) planes:

F = [(e12 + µ2e78) + 1
2λ3(e17 − µ2e28) + 1

2(λ2 + λ4)(e18 + µ2e27)]

∧(e34 + e56) + (e17 + µ2e28) ∧ [σ1(e35 + e46) − 1
2λ3(e34 − e56)]

+ (e18 − µ2e27) ∧ [σ3(e35 + e46) + σ4(e36 − e45) + 1
2(λ2 − λ4)(e34 − 356)].

Notice that the first two equations in(20)simply say that the two anti-self-dual 2-forms

σ1(e35 + e46) − 1
2λ3(e34 − e56),

σ3(e35 + e46) + σ4(e36 − e45) + 1
2(λ2 − λ4)(e34 − 356)
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are collinear. Therefore performing an anti-self-dual rotation in the (36)–(45) direction, we
can eliminate thee35+e46 ande36−e45 components, effectively settingσ1 = σ3 = σ4 = 0.
This reduces the problem to the previous case, except that nowµ2 = µ3.

2.6.6. so(2)
Finally, we consider the case whereι12F = αe34. The most generalF has the form

F = αe1234+ e1 ∧ G1 + e2 ∧ G2 + G3,

whereG1,G2 ∈ Λ3
E

6 andG3 ∈ Λ4
E

6, whereE
6 is spanned by{ei}3≤i≤8. Such anF will

obey [ι12F,F ] = 0 if and only if theGi have zero weights under theso(2) generated by
ι12F . This means that each ofG1,G2 is a linear combination of the eight monomials

e345, e346, e347, e348, e567, e568, e578, e678.

Using the freedom to conjugate by the SO(4) which acts in the (5678) plane, we can write
the most generalG3 as a linear combination of the monomialse5678, e3478, e3456. This still
leaves the possibility of rotating in the (56)- and (78) planes separately. Doing so we can
set to zero the coefficients of say,e2568 ande2678, leaving a total of 17 free parameters

F = e1234+ µ1e3456+ µ2e3478+ µ3e5678+ λ1e1347+ λ2e1348+ λ3e1567+ λ4e1568

+ λ5e2347+ λ6e2348+ λ7e2567+ σ1e1345+ σ2e1346+ σ3e1578+ σ4e1678

+ σ5e2345+ σ6e2346+ σ7e2578,

and where we have setα = 1 without loss of generality. We now impose the rest of the
equations [ιijF,F ] = 0. We first observe that ifµ1 �= 0, thenµ2 = µ3 = λi = σ3 = σ4 =
σ7 = 0, leaving

F = e1234+ µ1e3456+ σ1e1345+ σ2e1346+ σ5e2345+ σ6e2346,

subject to

σ1σ6 − σ2σ5 = µ1, (21)

which guarantees thatF is actually a simple form

F = (e1 − σ5e5 − σ6e6) ∧ (e2 + σ1e5 + σ2e6) ∧ e3 ∧ e4,

which is a degenerate case of the conclusion of the conjecture.
Let us then suppose thatµ1 = 0. We next observe that ifµ2 �= 0 thenµ3 = σi = λ3 =

λ4 = λ7 = 0. This is again, up to a relabelling of the coordinates, the same degenerate case
as before and the conclusion still holds.

Finally let us suppose that bothµ1 andµ2 vanish. We must distinguish between two
cases, depending on whetherµ3 also vanishes or not. Ifµ3 = 0 then we have thatF is
given by

F = e1234+ λ1e1347+ λ2e1348+ λ5e2347+ λ6e2348+ σ1e1345+ σ2e1346

+ σ5e2345+ σ6e2346,
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subject to the equations

λ2λ5 = λ1λ6, σ2σ5 = σ1σ6,

λ1σ5 = λ5σ1, λ6σ2 = λ2σ6,

λ1σ6 = λ5σ2, λ6σ1 = λ2σ5,

(22)

which are precisely the equations which allow us to rewriteF as a simple formF =
θ1 ∧ θ2 ∧ e3 ∧ e4, where

θ1 = e1 − σ5e5 − σ6e6 − λ5e7 − λ6e8, θ2 = e2 + σ1e5 + σ2e6 + λ1e7 + λ2e8.

Finally suppose thatµ3 �= 0. In this caseF is given by

F = e1234+ µ3e5678+ λ2(e1348+ µ3e2567) + λ5(e2347+ µ3e1568)

+ λ6(e2348− µ3e1567) + σ2(e1346+ µ3e2578) + σ5(e2345+ µ3e1678)

+ σ6(e2346− µ3e1578),

subject to the equations

λ2λ5 = λ2σ5 = σ2λ5 = σ2σ5 = 0 and λ6σ2 = λ2σ6. (23)

We must distinguish between three cases:

(1) λ2 �= 0,
(2) λ2 = 0 andσ2 �= 0, and
(3) λ2 = σ2 = 0.

We now do each in turn.
If λ2 �= 0,F is given by

F = e1234+ µ3e5678+ λ2(e1348+ µ3e2567) + λ6(e2348− µ3e1567)

+ σ2(e1346+ µ3e2578) + σ6(e2346− µ3e1578),

subject to the second equation in(23). This is precisely the equation that allows us to write
F as a sum of two simple formsF = F1 + µ3F2, where

F1 = (e1 − σ6e6 − λ6e8) ∧ (e2 + σ2e6 + λ2e8) ∧ e3 ∧ e4,

F2 = e5 ∧ (e6 + σ6e1 − σ2e2) ∧ e7 ∧ (e8 + λ6e1 − λ2e2).

Notice moreover thatF1 andF2 are orthogonal.
If λ2 = 0 andσ2 �= 0,F is given by

F = e1234+ µ3e5678+ σ2(e1346+ µ3e2578) + σ6(e2346− µ3e1578),

which can be written as a sumF = F1 + µ3F2 of two simple forms

F1 = (e1 − σ6e6) ∧ (e2 + σ2e6) ∧ e3 ∧ e4,

F2 = e5 ∧ (e6 + σ6e1 − σ2e2) ∧ e7 ∧ e8,

which moreover are orthogonal.
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Finally, if λ2 = σ2 = 0,F is given by

F = e1234+ µ3e5678+ λ5(e2347+ µ3e1568) + λ6(e2348− µ3e1567)

+ σ5(e2345+ µ3e1678) + σ6(e2346− µ3e1578),

which can be written as a sum of two orthogonal simple formsF = F1 + µ3F2, where

F1 = (e1 − σ5e5 − σ6e6 − λ5e7 − λ6e8) ∧ e2 ∧ e3 ∧ e4,

F2 = (e5 + σ5e1) ∧ (e6 + σ6e1) ∧ (e7 + λ5e1) ∧ (e8 + λ6e1).

2.7. Proof forF ∈ Λ4
E

7

Choose an orthonormal basis{e1, e2, . . . , e7} for which ι12F = αe34 + βe56, whereι12
means the contraction ofF by e12.

Suppose thatα andβ are generic. In this case, the equation [ι12F,F ] = 0 says that the
only terms inF which survive are those which are invariant under the maximal torus of
SO(5), the group of rotations in the five-dimensional space spanned by{e3, e4, . . . , e7};
that is,

F = αe1234+ βe1256+ γe3456.

Now [ι23F,F ] = 0 implies thatαβ = 0, violating the condition thatι12F be generic.
Non-generic rotations correspond to (conjugacy classes of) subalgebras ofso(5) with

rank strictly less than that ofso(5):

(1) su(2): α = β �= 0; and
(2) so(2): β = 0 andα �= 0.

We now go down this list case by case.

2.7.1. su(2)
In this caseι12F = α(e34+e56). This means that the most general solution of [ι12F,F ] =

0 is given by

F = αe1234+ αe1256+ e1 ∧ G1 + e2 ∧ G2 + G3,

whereG1,G2 ∈ Λ3
E

5 andG3 = Λ4
E

5, whereE
5 is spanned by{ei}3≤i≤7, and where the

Gi have zero weight with respect to thissu(2) algebra. A little group theory shows thatG1
andG2 are linear combinations of the following eight 3-forms:

e347 + e567, e347 − e567, e357 + e467, e367 − e457,

whereas

G3 = µe3456.
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This means thatF takes the following form:

F = αe1234+ αe1256+ µe3456+ λ1(e1347+ e1567) + λ2(e1347− e1567)

+ λ3(e1357+ e1467) + λ4(e1367− e1457)

+ ρ1(e2347+ e2567) + ρ2(e2347− e2567) + ρ3(e2357+ e2467)

+ ρ4(e2367− e2457).

Rotating in the anti-self-dual (3456) plane allows us to setλ3 = λ4 = 0. Imposing, for
example, the equation [ι23F,F ] = 0 and [ι25F,F ] = 0 tells us thatλ1 = λ2 = 0. This
allows us to rotate again in the anti-self-dual (3456) plane to setρ3 = ρ4 = 0 and imposing
[ι13F,F ] = 0 and [ι15F,F ] = 0 to find thatρ1 = ρ2 = 0. The remaining equations imply
thatα2 = 0 which is a contradiction.

2.7.2. so(2)
Finally, we consider the case whereι12F = αe34. The most generalF has the form

F = αe1234+ e1 ∧ G1 + e2 ∧ G2 + G3,

whereG1,G2 ∈ Λ3
E

5 andG3 ∈ Λ4
E

5, whereE
5 is spanned by{ei}3≤i≤7. Such anF will

obey [ι12F,F ] = 0 if and only if theGi have zero weights under theso(2) generated by
ι12F . This means that each ofG1,G2 is a linear combination of the four monomials

e345, e346, e347, e567.

Using the freedom to conjugate by the SO(3) which acts in the (567) plane, we can write

G3 = µe3456.

SoF is

F = αe1234+ µe3456+ λ1e1345+ λ2e1346+ λ3e1567+ σ1e2345+ σ2e2346+ σ3e2567.

Rotating in the (56) plane, we can setλ2 = 0. Suppose thatµ �= 0. In this case [ι36F,F ] =
0 implies thatλ3 = σ3 = 0. Next observe thatι34F is a 2-form in E

4 spanned by
{e1, e2, e5, e6}. If ι34F has rank 4 then it is the previous case which has led to a contradiction.
If it has rank 2, then the statement is shown.

It remains to show the statement forµ = 0. In this case, after performing a rotation in
the (56) plane and settingλ2 = 0, we have

F = αe1234+ λ1e1345+ λ3e1567+ σ1e2345+ σ2e2346+ σ3e2567.

One of the [ι13F,F ] = 0 conditions implies thatλ1σ2 = 0. If λ1 = 0, using a rotation in
the (56) plane, we can setσ2 = 0 as well. The conditions [ι13F,F ] = 0 and [ι23F,F ] = 0
imply thatλ3 = σ3 = 0. Thus

F = αe1234+ σ1e2345 = (αe1 − σ1e5) ∧ e234

and it is simple. If insteadσ2 = 0, using a rotation in the (12) plane we can setλ1 = 0.
Then an analysis similar to the above yields thatF is simple.
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2.8. Proof forF ∈ Λ4
E
d for d = 5,6

Choose an orthonormal basis inE
6{e1, e2, . . . , e6} for which ι12F = αe34+βe56, where

ι12 means the contraction ofF by e12.
Suppose thatα andβ are generic. In this case, the equation [ι12F,F ] = 0 says that the

only terms inF which survive are those which are invariant under the maximal torus of
SO(4), the group of rotations in the five-dimensional space spanned by{e3, e4, . . . , e6};
that is,

F = αe1234+ βe1256+ γe3456.

Now [ι23F,F ] = 0 implies thatαβ = 0, violating the condition thatι12F be generic.
Non-generic rotations correspond to (conjugacy classes of) subalgebras ofso(4) with

rank strictly less than that ofso(4):

(1) su(2): α = β �= 0; and
(2) so(2): β = 0 andα �= 0.

We now go down this list case by case.

2.8.1. su(2)
In this caseι12F = α(e34+e56). This means that the most general solution of [ι12F,F ] =

0 is given by

F = αe1234+ αe1256+ e1 ∧ G1 + e2 ∧ G2 + G3,

whereG1,G2 ∈ Λ3
E

4 andG3 = Λ4
E

4, whereE
4 is spanned by{ei}3≤i≤6, and where the

Gi have zero weight with respect to thissu(2) algebra. A little group theory shows that
G1 = G2 = 0 and

G3 = µe3456.

This means thatF takes the following form:

F = αe1234+ αe1256+ µe3456.

Imposing [ι23F,F ] = 0 we find thatα2 = 0 which is a contradiction.

2.8.2. so(2)
Finally, we consider the case whereι12F = αe34. The most generalF has the form

F = αe1234+ e1 ∧ G1 + e2 ∧ G2 + G3,

whereG1,G2 ∈ Λ3
E

4 andG3 ∈ Λ4
E

4, whereE
4 is spanned by{ei}3≤i≤6. Such anF will

obey [ι12F,F ] = 0 if and only if theGi have zero weights under theso(2) generated by
ι12F . This means that each ofG1,G2 is a linear combination of the two monomialse345
ande346, whence

G3 = µe3456,
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and

F = αe1234+ µe3456+ λ1e1345+ λ2e1346+ σ1e2345+ σ2e2346.

Rotating in the (56) plane, we can setλ2 = 0. Suppose thatµ �= 0. Next observe thatι34F

is a 2-form inE
4 spanned by{e1, e2, e5, e6}. If ι34F has rank 4 then it is the previous case

which has led to a contradiction. If it has rank 2, then the statement is shown.
It remains to show the statement ford = 5. In this case

F = αe1234+ βe1534+ γe2534.

The 2-formι34F has rank 2 inE3 spanned by{e1, e2, e3} and the statement is shown.

2.9. Proof forF ∈ Λ5
E

10

We shall not give the details of the proof of the conjecture in this case. This is because
the proof follows closely that ofF ∈ Λ5

E
1,9 which will be given explicitly below. The

only difference is certain signs in the various orthogonality relations that involve the “time”
direction. The rest of the proof follows unchanged.

2.10. Proof forF ∈ Λ5
E

1,9

Let us choose a pseudo-orthonormal basis{e0, e1, . . . , e9} with e0 time-like in such a
way that the 2-formι012F takes the form

ι012F = αe34 + βe56 + γe78.

Depending on the values ofα, β andγ we have the same cases as in the case ofd = 4
treated in the previous section. The most generalF can be written as

F = αe01234+ βe01256+ γe01278+ e12 ∧ G0 + e02 ∧ G1 + e01 ∧ G2 + e0

∧H0 + e1 ∧ H1 + e2 ∧ H2 + K, (24)

whereGi ∈ Λ3
E

7, Hi ∈ Λ4
E

7 andK ∈ Λ5
E

7, whereE
7 is spanned by{ei}3≤i≤9. For all

values ofα, β, γ, the 2-formι012F is an element in a fixed Cartan subalgebra ofso(6), and in
solving [ι012F,F ] = 0 we will be determining whichGi, Hi andK have zero weights with
respect to this element. We will first decompose the relevant exterior powers ofE

7 in so(6)
representations. First of all, notice thatE

7 = E
6 ⊕ R, whereE

6 is the vector representation
of so(6) andR is the span ofe9. This means that we can refine the above decomposition of
F and notice that eachGi and eachHi will be written as follows:

Gi = Li + Mi ∧ e9, and Hi = Ni + Pi ∧ e9,

whereMi ∈ Λ2
E

6, Li, Pi ∈ Λ3
E

6 andNi ∈ Λ4
E

6. SinceΛ4
E

6 ∼= Λ2
E

6, we need only
decomposeΛ2

E
6 andΛ3

E
6. ClearlyΛ2

E
6 ∼= so(6) is nothing but the 15-dimensional

adjoint representation with three zero weights corresponding to the Cartan subalgebra,
whereasΛ3

E
6 is a 20-dimensional irreducible representation having no zero weights with



320 J. Figueroa-O’Farrill, G. Papadopoulos / Journal of Geometry and Physics 49 (2004) 294–331

respect toso(6); although of course it many have zero weights with respect to subalgebras
of so(6). Finally, let us mention that as we saw in the previous section, we will always be
able to chooseK to be a linear combination of the monomialse34569, e34789, e56789by using
the freedom to conjugate by the normaliser of the Cartan subalgebra in whichι012F lies.

We have different cases to consider depending on the values ofα, β andγ and as in the
previous section we can label them according to the subalgebra ofso(6) in whose Cartan
subalgebra they lie:

(1) so(6): α, β andγ generic;
(2) su(3): α + β + γ = 0 but allα, β, andγ non-zero;
(3) su(2) × u(1): α = β �= γ, but again all non-zero;
(4) u(1) diagonal:α = β = γ �= 0;
(5) so(4): γ = 0 andα �= β non-zero;
(6) su(2): γ = 0 andα = β �= 0; and
(7) so(2): β = γ = 0 andα �= 0.

We now go down this list case by case.

2.10.1. so(6)
The generic case is easy to discard. The most generalF obeying [ι012F,F ] = 0 has 21

free parameters:

F = αe01234+ βe01256+ γe01278+ µ1e34569+ µ2e34789+ µ3e56789+ λ1e01349

+ λ2e02349+ λ3e12349+ λ4e01569+ λ5e02569+ λ6e12569+ λ7e01789+ λ8e02789

+ λ9e12789+ σ1e03456+ σ2e03478+ σ3e05678

+ σ4e1345+ σ5e13478+ σ6e15678+ σ7e23456+ σ8e23478+ σ9e25678.

If we now consider the equation [ι013F,F ] = 0 we see that it is not satisfied unless either
α or β are zero, violating the condition of genericity.

2.10.2. su(3)
As discussed above, thesu(3) zero weights in the representationsΛ2

E
6 andΛ3

E
6 are

linear combinations of the following forms:

e34, e56, e78, Ω1, Ω2,

whereΩi are defined inEq. (17). The most generalF satisfying [ι012F,F ] = 0 is given by

F = α(e01234− e01278) + β(e01256− e01278) + µ1e34569+ µ2e34789+ µ3e56789

+ λ1e01349+ λ2e02349+ λ3e12349+ λ4e01569+ λ5e02569+ λ6e12569+ λ7e01789

+ λ8e02789+ λ9e12789+ σ1e03456+ σ2e03478+ σ3e05678+ σ4e1345+ σ5e13478

+ σ6e15678+ σ7e23456+ σ8e23478+ σ9e25678+ ρ1e01 ∧ Ω1 + ρ2e02 ∧ Ω1

+ ρ3e12 ∧ Ω1 + ρ4e01 ∧ Ω2 + ρ5e02 ∧ Ω2 + ρ6e12 ∧ Ω2 − τ1e09 ∧ Ω1

− τ2e19 ∧ Ω1 − τ3e29 ∧ Ω1 − τ4e09 ∧ Ω2 − τ5e19 ∧ Ω2 − τ6e29 ∧ Ω2.
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There are thus 33 free parameters, which we can reduce to 32 as was done in the previous
section. Inspection of (some of) the remaining 30239 equations [ιijkF,F ] = 0 shows thatα
andβ are constrained to obeyα = ±β, violating the hypothesis of genericity.

2.10.3. su(2) × u(1)
We now letα = β, with the opposite case being related by an outer automorphism. As

mentioned aboveΛ3
E

6 has no zero weights, whereas those inΛ2
E

6 are linear combinations
of the following forms:

e34 + e56, e34 − e56, e35 + e46, e36 − e45, e78.

The first and last are the generators of the Cartan subalgebra ofsu(2) × u(1) whereas the
remaining three are the generators of the anti-self-dualsu(2) ⊂ so(4). Using the freedom to
conjugate by the anti-self-dualsu(2) we will be able to eliminate two of the free parameters
in the expression forF , which after this simplification takes the following form:

F = α(e01234+ e01256) + γe01278+ µ1e34569+ µ2e34789+ µ3e56789+ λ1e01349

+ λ2e02349+ λ3e12349+ λ4e01569+ λ5e02569+ λ6e12569+ λ7e01789+ λ8e02789

+ λ9e12789+ σ1e03456+ σ2e03478+ σ3e05678+ σ4e1345+ σ5e13478+ σ6e15678

+ σ7e23456+ σ8e23478+ σ9e25678+ ρ1(e01359+ e01469) + ρ2(e02359+ e02469)

+ ρ3(e12359+ e12469) + ρ4(e01369− e01459) + ρ5(e02369− e02459)

+ ρ6(e12369− e12459) + τ1(e04678+ e03578) + τ2(e04578− e03678)

+ τ3(e14678+ e13578) + τ4(e14578− e13678) + τ5(e24678+ e23578)

+ τ6(e24578− e23678),

which depends on 33 parameters. Inspection of the remaining equations immediately shows
thatαγ = 0, violating genericity.

2.10.4. u(1) diagonal
We now letα = β = γ. As mentioned in the analogous case in the previous section,

Λ3
E

6 has no zero weights, whereas those inΛ2
E

6 are linear combinations of theu(3)
generatorsωi:

e35 + e46, e45 − e36, e37 + e48, e47 − e38,

e57 + e68, e67 − e58, e34, e56, e78.

We have the freedom to conjugate by the normaliser of thisu(1) in so(6), which is precisely
u(3). This means that we can conjugate theu(3) generators in the formK in (24) to a
Cartan subalgebra ofu(3). In summary the most generalF contains 57 parameters and can
be written as

F = α(e01234+ e01256+ e01278) + µ1e34569+ µ2e34789+ µ3e56789

+
9∑

i=1

(λie01+λ9+ie02+λ18+ie12) ∧ ωi+
9∑

i=1

(σie0 + σ9+ie1 + σ18+ie2) ∧ :ωi,
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where:ωi ∈ Λ4
E

6 are the Hodge duals of theωi. Inspection of a few of the remaining
equations shows that they are consistent only ifα = 0, which violates the hypothesis.

As in the eight-dimensional case treated in the previous section, there are no solutions
whenι012F has maximal rank, a fact which again lacks a simpler explanation.

2.10.5. so(4)
Let ι012F = αe34 + βe56 with α andβ generic. The condition that [ι012F,F ] = 0 means

thatF takes the form given byEq. (24)whereGi ∈ Λ3
E

7 are linear combinations of the
six monomials

e347, e348, e349, e567, e568, e569,

where theHi ∈ Λ4
E

7 are linear combinations of their duals

e5689, e5679, e5678, e3489, e3479, e3478.

The 5-formK is as usual a linear combination of the three monomials:e34569, e34789, e56789.
In summary,F is given by the following expression containing 39 free parameters:

F = αe01234+ βe01256+ µ1e34569+ µ2e34789+ µ3e56789+ λ1e01347+ λ2e02347

+ λ3e12347+ λ4e01348+ λ5e02348+ λ6e12348+ λ7e01349+ λ8e02349

+ λ9e12349+ σ1e01567+ σ2e02567+ σ3e12567+ σ4e01568+ σ5e02568

+ σ6e12568+ σ7e01569+ σ8e02569+ σ9e12569+ ρ1e03478+ ρ2e13478+ ρ3e23478

+ ρ4e03479+ ρ5e13479+ ρ6e23479+ ρ7e03489+ ρ8e13489+ ρ9e23489+ τ1e05678

+ τ2e15678+ τ3e25678+ τ4e05679+ τ5e15679+ τ6e25679+ τ7e05689

+ τ8e15689+ τ9e25689.

We can still rotate in the (12) and (78) planes and in this way set to zero two of the above
parameters, sayσ3 andρ3, although we do not gain much from it. The equations [ιijkF,F ] =
0 have solutions for everyα, β. Settingα = 1 without loss of generality, we find thatµ1 = 0
and that all the variables are given in terms of theλi which remain unconstrained:

τ1 = µ3λ9, σ1 = −µ3ρ9, ρ1 = λ1λ5 − λ2λ4,

τ2 = µ3λ8, σ2 = µ3ρ8, ρ2 = λ1λ6 − λ3λ4,

τ3 = −µ3λ7, σ3 = µ3ρ7, ρ3 = λ2λ6 − λ3λ5,

τ4 = −µ3λ6, σ4 = µ3ρ6, ρ4 = λ1λ8 − λ2λ7,

τ5 = −µ3λ5, σ5 = −µ3ρ5, ρ5 = λ1λ9 − λ3λ7,

τ6 = µ3λ4, σ6 = −µ3ρ4, ρ6 = λ2λ9 − λ3λ8,

τ7 = µ3λ3, σ7 = −µ3ρ3, ρ7 = λ4λ8 − λ5λ7,

τ8 = µ3λ2, σ8 = µ3ρ2, ρ8 = λ4λ9 − λ6λ7,

τ9 = −µ3λ1, σ9 = µ3ρ1, ρ9 = λ5λ9 − λ6λ8,

and

µ2 = λ1λ5λ9 − λ3λ5λ7 + λ2λ6λ7 + λ3λ4λ8 − λ1λ6λ8 − λ2λ4λ9,



J. Figueroa-O’Farrill, G. Papadopoulos / Journal of Geometry and Physics 49 (2004) 294–331323

subject to one equation

β = µ2µ3. (25)

Remarkably (perhaps) these equations are precisely the ones that guarantee thatF can be
written as a sum of two simple forms

F = θ0 ∧ θ1 ∧ θ2 ∧ e3 ∧ e4 + µ3e5 ∧ e6 ∧ θ7 ∧ θ8 ∧ θ9,

where

θ0 = e0 + λ3e7 + λ6e8 + λ9e9, θ7 = e7 + λ3e0 + λ2e1 − λ1e2,

θ1 = e1 − λ2e7 − λ5e8 − λ8e9, θ8 = e8 + λ6e0 + λ5e1 − λ4e2,

θ2 = e2 + λ1e7 + λ4e8 + λ7e9, θ9 = e9 + λ9e0 + λ8e1 − λ7e2.

Notice moreover thatθi ⊥ θj for i = 0,1,2 andj = 7,8,9, whence the conjecture holds.

2.10.6. su(2)
Let ι012F = α(e01234+ e01256), where we can putα = 1 without loss of generality. The

most general solution of [ι012F,F ] = 0 takes the form(24) whereK is as usual a linear
combination of the three monomialse34569, e34789, e56789, theGi are linear combinations
of the following 3-forms:

e34i + e56i, e34i − e56i, e35i + e46i, e36i − e45i, e789,

wherei = 7,8,9, and theHi are linear combinations of their duals. In total we have 81 free
parameters:

F = e01234+ e01256+ µ1e34569+ µ2e34789+ µ3e56789+ λ1e01347+ λ2e01348

+ λ3e01349+ λ4e01567+ λ5e01568+ λ6e01569+ λ7e01789+ λ8(e01357+ e01467)

+ λ9(e01358+ e01468) + λ10(e01359+ e01469) + λ11(e01367− e01457)

+ λ12(e01368− e01458) + λ13(e01369− e01459)

+ ρ1e02347+ ρ2e02348+ ρ3e02349+ ρ4e02567+ ρ5e02568+ ρ6e02569+ ρ7e02789

+ ρ8(e02357+ e02467) + ρ9(e02358+ e02468) + ρ10(e02359+ e02469)

+ ρ11(e02367− e02457) + ρ12(e02368− e02458) + ρ13(e02369− e02459)

+ σ1e12347+ σ2e12348+ σ3e12349+ σ4e12567+ σ5e12568+ σ6e12569+ σ7e12789

+ σ8(e12357+ e12467) + σ9(e12358+ e12468) + σ10(e12359+ e12469)

+ σ11(e12367− e12457) + σ12(e12368− e12458) + σ13(e12369− e12459)

+ η1e03456+ η2e03478+ η3e03479+ η4e03489+ η5e05678+ η6e05679+ η7e05689

+ η8(e03578+ e04678) + η9(e03579+ e04679) + η10(e03589+ e04689)

+ η11(e03678− e04578) + η12(e03679− e04579) + η13(e03689− e04589)

+φ1e13456+ φ2e13478+ φ3e13479+ φ4e13489+ φ5e15678+ φ6e15679+ φ7e15689

+φ8(e13578+ e14678) + φ9(e13579+ e14679) + φ10(e13589+ e14689)

+φ11(e13678− e14578) + φ12(e13679− e14579) + φ13(e13689− e14589)
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+ τ1e23456+ τ2e23478+ τ3e23479+ τ4e23489+ τ5e25678+ τ6e25679+ τ7e25689

+ τ8(e23578+ e24678) + τ9(e23579+ e24679) + τ10(e23589+ e24689)

+ τ11(e23678− e24578) + τ12(e23679− e24579) + τ13(e23689− e24589).

We notice first of all that the equations [ιijkF,F ] = 0 imply thatλ7 = ρ7 = σ7 = 0 and
after close inspection of the equations one can see that there are no solutions unlessµ1 = 0,
which we will assume from now on.

One then must distinguish between two cases, depending on whether or notµ2 equals
µ3. Let us first of all consider the generic situationµ2 �= µ3. One immediately sees that
the following coefficients vanish:λi = ρi = σi = ηi = τi = φi = 0 for i ≥ 8, leavingF in
the following form:

F = e34 ∧ G1 + e56 ∧ G2,

where

G1 = e012 + µ2e789 + λ1e017 + λ2e018 + λ3e019 + ρ1e027 + ρ2e028 + ρ3e029

+ σ1e127 + σ2e128 + σ3e129 + η2e078 + η3e079 + η4e089 + φ2e178 + φ3e179

+φ4e189 + τ2e278 + τ3e279 + τ4e289

and

G2 = e012 + µ3e789 + λ4e017 + λ5e018 + λ6e019 + ρ4e027 + ρ5e028 + ρ6e029

+ σ4e127 + σ5e128 + σ6e129 + η5e078 + η6e079 + η7e089 + φ5e178 + φ6e179

+φ7e189 + τ5e278 + τ6e279 + τ7e289.

Some of the remaining equations express theη’s, φ’s andτ’s in terms of theλ’s, ρ’s and
σ’s:

η2 = µ2σ6, τ2 = −µ2λ6, φ2 = µ2ρ6,

η3 = −µ2σ5, τ3 = µ2λ5, φ3 = −µ2ρ5,

η4 = µ2σ4, τ4 = −µ2λ4, φ4 = µ2ρ4,

η5 = µ3σ3, τ5 = −µ3λ3, φ5 = µ3ρ3,

η6 = −µ3σ2, τ6 = µ3λ2, φ6 = −µ3ρ2,

η7 = µ3σ1, τ7 = −µ3λ1, φ7 = µ3ρ1,

whereas others in turn relateλi, ρi andσi for i = 4,5,6 toλj, ρj andσj for j = 1,2,3:

λ4 = µ3(ρ3σ2 − ρ2σ3), ρ4 = µ3(λ2σ3 − λ3σ2), σ4 = µ3(λ2ρ3 − λ3ρ2),

λ5 = µ3(ρ1σ3 − ρ3σ1), ρ5 = µ3(λ3σ1 − λ1σ3), σ5 = µ3(λ3ρ1 − λ1ρ3),

λ6 = µ3(ρ2σ1 − ρ1σ2), ρ6 = µ3(λ1σ2 − λ2σ1), σ6 = µ3(λ1ρ2 − λ2ρ1).

The remaining independent variables are subject to two final equations:

µ2 =
∑
π∈S3

(−1)|π|λπ(1)ρπ(2)σπ(3) and µ2µ3 = 1, (26)
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where the sum in the first equation is over the permutations of three letters and weighted by
the sign of the permutation. These equations guarantee thatG1 andG2 are simple forms:

G1 = θ0 ∧ θ1 ∧ θ2 and G2 = µ3θ7 ∧ θ8 ∧ θ9,

where

θ0 = e0 + σ1e7 + σ2e8 + σ3e9, θ1 = e1 − ρ1e7 − ρ2e8 − ρ3e9,

θ2 = e2 + λ1e7 + λ2e8 + λ3e9,

θ7 = e7 + σ1e0 + ρ1e1 − λ1e2, θ8 = e8 + σ2e0 + ρ2e1 − λ2e2,

θ9 = e9 + σ3e0 + ρ3e1 − λ3e2.

If we defineθi = ei for i = 3,4,5,6 then we see that theθi are mutually orthogonal and
hence that

F = θ0 ∧ θ1 ∧ θ2 ∧ θ3 ∧ θ4 + µ3θ5 ∧ θ6 ∧ θ7 ∧ θ8 ∧ θ9

is a sum of two orthogonal simple forms.
Finally we consider the caseµ2 = µ3 which has no solution unlessµ2

2 = 1. As in the
case of 4-forms in eight dimensions treated in the previous section, we will show that we
can choose a frame where the coefficientsλi, ρi andσi vanish fori ≥ 8, thus reducing this
case to the generic case treated immediately above.

Some of the equations [ιijkF,F ] = 0 express theη’s, τ’s andφ’s in terms of theλ’s, ρ’s
andσ’s, leavingF in the following form

F = e01234+ e01256+ µ2(e34789+ e56789) + λ1(e01347− µ2e25689)

+ λ2(e01348+ µ2e25679) + λ3(e01349− µ2e25678) + λ4(e01567− µ2e23489)

+ λ5(e01568+ µ2e23479) + λ6(e01569− µ2e23478)

+ λ8(e01357+ e01467+ µ2e23589+ µ2e24689)

+ λ9(e01358+ e01468− µ2e23579− µ2e24679)

+ λ10(e01359+ e01469+ µ2e23578+ µ2e24678)

+ λ11(e01367− e01457+ µ2e23689− µ2e24589)

+ λ12(e01368− e01458− µ2e23679+ µ2e24579)

+ λ13(e01369− e01459+ µ2e23678− µ2e24578)

+ ρ1(e02347+ µ2e15689) + ρ2(e02348− µ2e15679) + ρ3(e02349+ µ2e15678)

+ ρ4(e02567+ µ2e13489) + ρ5(e02568− µ2e13479) + ρ6(e02569+ µ2e13478)

+ ρ8(e02357+ e02467− µ2e13589− µ2e14689)

+ ρ9(e02358+ e02468+ µ2e13579+ µ2e14679)

+ ρ10(e02359+ e02469− µ2e13578− µ2e14678)

+ ρ11(e02367− e02457− µ2e13689+ µ2e14589)

+ ρ12(e02368− e02458+ µ2e13679− µ2e14579)
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+ ρ13(e02369− e02459− µ2e13678+ µ2e14578) + σ1(e12347+ µ2e05689)

+ σ2(e12348− µ2e05679) + σ3(e12349+ µ2e05678) + σ4(e12567+ µ2e03489)

+ σ5(e12568− µ2e03479) + σ6(e12569+ µ2e03478)

+ σ8(e12357+ e12467− µ2e03589− µ2e04689)

+ σ9(e12358+ e12468+ µ2e03579+ µ2e04679)

+ σ10(e12359+ e12469− µ2e03578− µ2e04678)

+ σ11(e12367− e12457− µ2e03689+ µ2e04589)

+ σ12(e12368− e12458+ µ2e03679− µ2e04579)

+ σ13(e12369− e12459− µ2e03678+ µ2e04578).

Let us define the following (anti)self-dual 3-forms in the (012789) plane:

ω±
0 = e012 ± µ2e789, ω±

5 = e028 ∓ µ2e179,

ω±
1 = e017 ∓ µ2e289, ω±

6 = e029 ± µ2e178,

ω±
2 = e018 ± µ2e279, ω±

7 = e127 ± µ2e089,

ω±
3 = e019 ∓ µ2e278, ω±

8 = e128 ∓ µ2e079,

ω±
4 = e027 ± µ2e189, ω±

9 = e129 ± µ2e078,

and the following (anti)self-dual 2-forms in the (3456) plane:

Θ±
1 = e34 ± e56, Θ±

2 = e35 ∓ e46, Θ±
3 = e36 ± e45,

in terms of which we can rewriteF in a more transparent form:

F = Θ+
1 ∧

(
ω+

0 +
9∑

i=1

ν+
i ω

+
i

)
+

9∑
i=1

ω−
i Ψ

−
i ,

where theΨ−
i are defined by

Ψ−
1 = ν−

1 Θ
−
1 + λ8Θ

−
2 + λ11Θ

−
3 , Ψ−

2 = ν−
2 Θ

−
1 + λ9Θ

−
2 + λ12Θ

−
3 ,

Ψ−
3 = ν−

3 Θ
−
1 + λ10Θ

−
2 + λ13Θ

−
3 , Ψ−

4 = ν−
4 Θ

−
1 + ρ8Θ

−
2 + ρ11Θ

−
3 ,

Ψ−
5 = ν−

5 Θ
−
1 + ρ9Θ

−
2 + ρ12Θ

−
3 , Ψ−

6 = ν−
6 Θ

−
1 + ρ10Θ

−
2 + ρ13Θ

−
3 ,

Ψ−
7 = ν−

7 Θ
−
1 + σ8Θ

−
2 + σ11Θ

−
3 , Ψ−

8 = ν−
8 Θ

−
1 + σ9Θ

−
2 + σ12Θ

−
3 ,

Ψ−
9 = ν−

9 Θ
−
1 + σ10Θ

−
2 + σ13Θ

−
3 ,

and where we have introduced the following variables

ν±
1 = 1

2(λ1 ± λ4), ν±
4 = 1

2(ρ1 ± ρ4), ν±
7 = 1

2(σ1 ± σ4),

ν±
2 = 1

2(λ2 ± λ5), ν±
5 = 1

2(ρ2 ± ρ5), ν±
8 = 1

2(σ2 ± σ5),

ν±
3 = 1

2(λ3 ± λ6), ν±
6 = 1

2(ρ3 ± ρ6), ν±
9 = 1

2(σ3 ± σ6).

Some of the remaining equations [ιijkF,F ] = 0 now say that the nine anti-self-dual 2-forms
Ψ−
i are collinear. This means that by an anti-self-dual rotation in the (3456) plane we can
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setλi = ρi = σi = 0 for i ≥ 8. We have therefore managed to reduce this case to the
generic case (µ2 �= µ3) except that nowµ2 = µ3; but this was shown above to verify the
conjecture.

2.10.7. so(2)
Let ι012F = αe01234, where we can putα = 1 without loss of generality. The most

general solution of [ι012F,F ] = 0 takes the form(24) where theK is as usual a linear
combination of the three monomialse34569, e34789, e56789, theGi are linear combinations
of the following 3-forms:

e345, e346, e347, e348, e349,

e567, e568, e569, e578, e579,

e589, e678, e679, e689, e789,

and theHi are linear combinations of their duals. The most general solution to [ι012F,F ] = 0
has 93 free parameters:

F = e01234+ µ1e34569+ µ2e34789+ µ3e56789+ λ1e01345+ λ2e01346+ λ3e01347

+ λ4e01348+ λ5e01349+ λ6e01567+ λ7e01568+ λ8e01569+ λ9e01578

+ λ10e01579+ λ11e01589+ λ12e01678+ λ13e01679+ λ14e01689+ λ15e01789

+ σ1e02345+ σ2e02346+ σ3e02347+ σ4e02348+ σ5e02349+ σ6e02567+ σ7e02568

+ σ8e02569+ σ9e02578+ σ10e02579+ σ11e02589+ σ12e02678+ σ13e02679

+ σ14e02689+ σ15e02789+ ρ1e12345+ ρ2e12346+ ρ3e12347+ ρ4e12348

+ ρ5e12349+ ρ6e12567+ ρ7e12568+ ρ8e12569+ ρ9e12578+ ρ10e12579

+ ρ11e12589+ ρ12e12678+ ρ13e12679+ ρ14e12689+ ρ15e12789+ τ1e03456

+ τ2e03457+ τ3e03458+ τ4e03459+ τ5e03467+ τ6e03468+ τ7e03469+ τ8e03478

+ τ9e03479+ τ10e03489+ τ11e05678+ τ12e05679+ τ13e05689+ τ14e05789

+ τ15e06789+ φ1e13456+ φ2e13457+ φ3e13458+ φ4e13459+ φ5e13467

+φ6e13468+ φ7e13469+ φ8e13478+ φ9e13479+ φ10e13489+ φ11e15678

+φ12e15679+ φ13e15689+ φ14e15789+ φ15e16789+ η1e23456+ η2e23457

+ η3e23458+ η4e23459+ η5e23467+ η6e23468+ η7e23469+ η8e23478+ η9e23479

+ η10e23489+ η11e25678+ η12e25679+ η13e25689+ η14e25789+ η15e26789.

First we consider the case whereµ1 �= 0. This means that many of the parameters must
vanish:µ2 = µ3 = 0, ηi = φi = τi = 0 for i �= 1,4,7 andλj = ρj = σj = 0 for
j �= 1,2,5. The resultingF can be written asF = e34 ∧ G, where

G= e012 + µ1e569 + λ1e015 + λ2e016 + λ5e019 + σ1e025 + σ2e026 + σ5e029

+ ρ1e125 + ρ2e126 + ρ5e129 + τ1e056 + τ4e059 + τ7e069 + φ1e156 + φ4e159

+φ7e169 + η1e256 + η4e259 + η7e269,
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where

τ1 = λ1σ2 − λ2σ1, φ1 = λ1ρ2 − λ2ρ1, η1 = σ1ρ2 − σ2ρ1,

τ4 = λ1σ5 − λ5σ1, φ4 = λ1ρ5 − λ5ρ1, η4 = σ1ρ5 − σ5ρ1,

τ7 = λ2σ5 − λ5σ2, φ7 = λ2ρ5 − λ5ρ2, η7 = σ2ρ5 − σ5ρ2,

and subject to the equation

µ1 = λ5ρ2σ1 − λ2ρ5σ1 − λ5ρ1σ2 + λ1ρ5σ2 + λ2ρ1σ5 − λ1ρ2σ5, (27)

which implies thatG (and henceF ) is simple:

G= (e0 + ρ1e5 + ρ2e6 + ρ5e9) ∧ (e1 − σ1e5 − σ2e6 − σ5e9)

∧ (e2 + λ1e5 + λ2e6 + λ5e9).

Let us assume from now on thatµ1 = 0. If µ2 �= 0 then the same conclusion as above
obtains andF is simple. Details are the same up to a permutation of the orthonormal basis.
We therefore assume thatµ2 = 0. If µ3 = 0 then the following coefficients vanish:ηi =
φi = τi = 0 for i ≥ 11 andλj = ρj = σj = 0 for j ≥ 6, resulting inF = e34 ∧ G, with

G= e012 + λ1e015 + λ2e016 + λ3e017 + λ4e018 + λ5e019 + σ1e025 + σ2e026

+ σ3e027 + σ4e028 + σ5e029 + ρ1e125 + ρ2e126 + ρ3e127 + ρ4e128 + ρ5e129

+ τ1e056 + τ2e057 + τ3e058 + τ4e059 + τ5e067 + τ6e068 + τ7e069 + τ8e078

+ τ9e079 + τ10e089 + φ1e156 + φ2e157 + φ3e158 + φ4e159 + φ5e167 + φ6e168

+φ7e169 + φ8e178 + φ9e179 + φ10e189 + η1e256 + η2e257 + η3e258 + η4e259

+ η5e267 + η6e268 + η7e269 + η8e278 + η9e279 + η10e289,

where

φ1 = λ1ρ2 − λ2ρ1, η1 = σ1ρ2 − σ2ρ1, τ1 = λ1σ2 − λ2σ1,

φ2 = λ1ρ3 − λ3ρ1, η2 = σ1ρ3 − σ3ρ1, τ2 = λ1σ3 − λ3σ1,

φ3 = λ1ρ4 − λ4ρ1, η3 = σ1ρ4 − σ4ρ1, τ3 = λ1σ4 − λ4σ1,

φ4 = λ1ρ5 − λ5ρ1, η4 = σ1ρ5 − σ5ρ1, τ4 = λ1σ5 − λ5σ1,

φ5 = λ2ρ3 − λ3ρ2, η5 = σ2ρ3 − σ3ρ2, τ5 = λ2σ3 − λ3σ2,

φ6 = λ2ρ4 − λ4ρ2, η6 = σ2ρ4 − σ4ρ2, τ6 = λ2σ4 − λ4σ2,

φ7 = λ2ρ5 − λ5ρ2, η7 = σ2ρ5 − σ5ρ2, τ7 = λ2σ5 − λ5σ2,

φ8 = λ3ρ4 − λ4ρ3, η8 = σ3ρ4 − σ4ρ3, τ8 = λ3σ4 − λ4σ3,

φ9 = λ3ρ5 − λ5ρ3, η9 = σ3ρ5 − σ5ρ3, τ9 = λ3σ5 − λ5σ3,

φ10 = λ4ρ5 − λ5ρ4, η10 = σ4ρ5 − σ5ρ4, τ10 = λ4σ5 − λ5σ4,

(28)

subject to the following 10 equations:∑
π∈S3

(−1)|π|λπ(i)ρπ(j)σπ(k) = 0 (29)
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for 1 ≤ i < j < k ≤ 5, where the sum is over the permutations of three letters and weighted
by the sign of the permutation. These equations are precisely the ones which guarantee that
G (and henceF ) is actually a simple formG = θ0 ∧ θ1 ∧ θ2, with

θ0 = e0 + ρ1e5 + ρ2e6 + ρ3e7 + ρ4e8 + ρ5e9,

θ1 = e1 − σ1e5 − σ2e6 − σ3e7 − σ4e8 − σ5e9,

θ2 = e2 + λ1e5 + λ2e6 + λ3e7 + λ4e8 + λ5e9.

Finally, if µ3 �= 0 all that happens is that we find that the coefficients which vanish when
µ3 = 0 are given in terms of those which do not by the following equations:

η15 = −µ3λ1, φ15 = µ3σ1, τ15 = µ3ρ1,

η14 = µ3λ2, φ14 = −µ3σ2, τ14 = −µ3ρ2,

η13 = −µ3λ3, φ13 = µ3σ3, τ13 = µ3ρ3,

η12 = µ3λ4, φ12 = −µ3σ4, τ12 = −µ3ρ4,

η11 = −µ3λ5, φ11 = µ3σ5, τ11 = µ3ρ5,

and

λ15 = −µ3η1, ρ15 = −µ3τ1, σ15 = µ3φ1,

λ14 = µ3η2, ρ14 = −µ3τ2, σ14 = −µ3φ2,

λ13 = −µ3η3, ρ13 = µ3τ3, σ13 = µ3φ3,

λ12 = µ3η4, ρ12 = −µ3τ4, σ12 = −µ3φ4,

λ11 = −µ3η5, ρ11 = µ3τ5, σ11 = µ3φ5,

λ10 = µ3η6, ρ10 = −µ3τ6, σ10 = −µ3φ6,

λ9 = −µ3η7, ρ9 = µ3τ7, σ9 = µ3φ7,

λ8 = −µ3η8, ρ8 = µ3τ8, σ8 = µ3φ8,

λ7 = µ3η9, ρ7 = −µ3τ9, σ7 = −µ3φ9,

λ6 = −µ3η10, ρ6 = µ3τ10, σ6 = µ3φ10.

This implies thatF = F1+µ3F2, whereF1 was shown above to be simple andF2 is given by

F2 = e56789− η10e01567+ η9e01568− η8e01569− η7e01578+ η6e01579− η5e01589

+ η4e01678− η3e01679+ η2e01689− η1e01789+ φ10e02567− φ9e02568

+φ8e02569+ φ7e02578− φ6e02579+ φ5e02589− φ4e02678+ φ3e02679

−φ2e02689+ φ1e02789+ τ10e12567− τ9e12568+ τ8e12569+ τ7e12578− τ6e12579

+ τ5e12589− τ4e12678+ τ3e12679− τ2e12689+ τ1e12789+ ρ5e05678− ρ4e05679

+ ρ3e05689− ρ2e05789+ ρ1e06789+ σ5e15678− σ4e15679+ σ3e15689− σ2e15789

+ σ1e16789− λ5e25678+ λ4e25679− λ3e25689+ λ2e25789− λ1e26789,
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where the relations(28)hold and the independent parameters satisfy the same 10equations
(28). This then implies that

F2 = θ5 ∧ θ6 ∧ θ7 ∧ θ8 ∧ θ9,

where

θ5 = e5 + ρ1e0 + σ1e1 − λ1e2, θ6 = e6 + ρ2e0 + σ2e1 − λ2e2,

θ7 = e7 + ρ3e0 + σ3e1 − λ3e2, θ8 = e8 + ρ4e0 + σ4e1 − λ4e2,

θ9 = e9 + ρ5e0 + σ5e1 − λ5e2.

Finally, we notice that the simple formsF1 andF2 are orthogonal since so are the 1-forms
θi (definingθ3 = e3 andθ4 = e4). This then concludes the verification of the conjecture
for this case.
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